I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher di informazioni apprese con la frequenza delle lezioni e lo studio autonomo di eventuali testi di riferimento in preparazioneall’esame finale o della tesi. Non devono intendersi come materiale ufficiale dell’università attribuibile al docente del corso o al relatore
…continua

Filtra per

Tutte le tipologie

Ordina

Filtra

Appunti di Analisi matematica

Appunti di Analisi matematica 1 per l’esame del professor Pianese. Gli argomenti trattati sono i seguenti: la risoluzione delle equazioni fratte letterali, la riduzione dei termini simili, la condizione di esistenza, le equazioni letterali, frazioni numeriche.
...continua

Esame Analisi matematica II

Facoltà Ingegneria

Appunto
4 / 5
Formulario completo per l'esame scritto di Analisi matematica II della professoressa Papalini. Gli argomenti trattati sono i seguenti: le funzioni scalari, le derivate, la funzione scalare a superficie, i campi vettoriali e le superfici, le equazioni differenziali.
...continua

Esame Analisi matematica 1

Facoltà Ingegneria dei sistemi

Dal corso del Prof. M. Verri

Università Politecnico di Milano

Appunto
Appunti di Analisi matematica per l’esame del professor Verri. Gli argomenti trattati sono i seguenti: il teorema di Rolle, l'applicazione del teorema di Rolle, le radici distinte di P (X), la derivabile, esercizi svolti in merito al teorema di Rolle.
...continua

Esame Analisi matematica 1

Facoltà Ingegneria i

Dal corso del Prof. P. Suria

Università Politecnico di Torino

Appunto
3 / 5
Formulario sintetico per l'eame di Analisi matematica 1 della professoressaSuria su: Funzioni concave e convesse, crescenti e decrescenti, flessi, uso di Taylor:ordine e parte principale, punti critici, regole di derivazione, tabella limiti notevoli principali, limiti notevoli con Landau, algebra degli o-piccolo, ordine di infinito,punti critici.
...continua
Riassunto de Studio di funzione presentazione generale per l'esame di Analisi matematica I del professor Boccuto. Come intraprendere uno studio di funzione spiegando gli argomenti necessari e facendo capire cosa si sta facendo. Dal dominio all'integrale.
...continua

Esame Analisi matematica 1

Facoltà Ingegneria

Dal corso del Prof. A. Laforgia

Università Università degli Studi Roma Tre

Appunto
4 / 5
Appunti di Analisi matematica 1 per l'esame del professor Laforgia sui numeri complessi tratti dalle lezioni del docente. Contengono le principali caratteristiche e formule sui numeri complessi. Tra gli argomenti trattati: la formula di De Moivre, la forma esponenziale geometrica cartesiana.
...continua

Esame Analisi matematica 1

Facoltà Ingegneria

Dal corso del Prof. A. Laforgia

Università Università degli Studi Roma Tre

Appunto
4,5 / 5
Appunti di Analisi matematica 1 per l’esame del professor laforgia. Gli argomenti trattati sono i seguenti: le serie numeriche, la serie divergente positivamente, il criterio di Cauchy, le proprietà di linearità delle serie convergenti, il criterio del confronto, il criterio dell'indice.
...continua

Esame Analisi matematica I

Facoltà Ingegneria

Dal corso del Prof. R. Manzo

Università Università degli Studi di Salerno

Appunto
Appunti di Analisi matematica I sugli spazi vettoriali per l'esame della professoressa Manzo. E' presente tutta la teoria sugli spazi vettoriali, a partire dalle definizioni, attraverso tutti i teoremi (sulle basi, sull'ortogonalità, etc...) fino alle equivalenze e ai sistemi lineari
...continua

Esame Analisi matematica I

Facoltà Ingegneria

Dal corso del Prof. R. Manzo

Università Università degli Studi di Salerno

Appunto
Appunti di Analisi matematica 1 per l'esame della professoressa Manzo. E' presenta tutta la teoria dalle definizioni alle proprietà delle matrici al metodo di Gauss per la diagonalizzazione, come: la matrice traingolare superiore, la matrice triangolare inferiore.
...continua

Esame Analisi matematica 1

Facoltà Ingegneria

Dal corso del Prof. E. Bonetti

Università Università degli Studi di Pavia

Appunto
4 / 5
Appunti di tutte le lezioni del corso di Analisi matematica uno, completi di esercizi, esempi, spiegazione delle dimostrazioni, il tutto è valso un bel 30! Questi appunti vanno bene per qualsiasi corso di analisi matematica compreso Bioingegneria, elettronica, informatica ecc... La sintesi degli argomenti è: -Numeri -Funzioni di una variabile -limiti e continuità -calcolo differenziale per funzioni di una variabile -serie -calcolo integrale Sono presenti le serie, mentre le equazioni differenziali verranno caricate a parte! i teoremi hanno tutti la propria dimostrazione. testo di riferimento: Analisi matematica uno-Bramanti, Pagani, Salsa.
...continua
Appunti di Analisi matematica 2 per l'esame del professor Morsella. Gli argomenti trattati sonoi seguenti: integrali indefiniti, finiti e impropri, Teorema di integrabilità, Teorema del Valor medio, Teorema fondamentale del calcolo integrale, Primitiva, metodo di integrazione per parti e sostituzione, integrali di funzioni razionali, integrali impropri, teorema del confronto, teorema del confronto asintotico, esercizi svolti vari sugli integrali, criterio integrale di convergenza di serie non negative, successione e serie di funzioni ad una variabile, convergenza puntuale ed uniforme di successioni di funzioni, teorema di passaggio al limite sotto il segno di integrale e derivata, serie di funzioni, serie di potenze, continuità della somma di una serie di potenze, integrazione termine a termine delle serie di potenze, derivazione termine a termine delle serie di potenze, studio di funzioni integrali, funzioni in più variabili, intorni sferici, punto di accumulazione, punto isolato, chiusura di un insieme, limite di una funzione a più variabili, studio della convergenza di integrali ( esercizi svolti ), teorema di Bolzano-Weierstrass per successioni di funzioni, successioni di Cauchy in più variabili, Teorema ponte, Teorema di Weierstrass, uniforme continuità, curve parametriche, sostegno di una curva, esercizi sul dominio di funzioni a più variabili, Teorema di esistenza degli zeri per funzioni a più variabili, Teorema dei valori intermedi per funzioni a più variabili, derivate direzionali e parziali, differenziabilità ( criteri ), esercizi sulle curve, teorema del differenziale totale, piano tangente al grafico della curva, Teorema del valor medio o di Lagrange per funzioni in più variabili, differenziabilità di secondo grado, Teorema di Schwarz, formula di Taylor per funzioni in più variabili, massimi e minimi di funzioni in più variabili, curve in coordinate polari, curve regolari, integrali di funzioni in due variabili, formule di riduzione, esercizi svolti sugli integrali di superficie, integrali di volume
...continua
Appunti di Analisi 1 ed esercizi svolti per l'esame del professor Piccardello. Sono presenti Teoremi e dimostrazioni degli argomenti classici dello studio di funzione. Argomenti: Analisi matematica, integrali in una variabile, limiti, teorema del Confronto, Simboli di Landau in particolare o-piccoli e O-grandi, Successioni a coeff reali, Successioni di Cauchy,Serie e Serie di potenze,Teorema di Heine-Borel, numeri complessi ,coefficienti binomiali,Principio di induzione, funzioni una variabile, teorema di Weierstrass, Teorema di Heine-Cantor, calcolo differenziale, Derivata, teorema di Lagrange, Estremo superiore/inferiore, Spazio metrico, Teorema del binomio di Newton, Teorema fondamentale dell'algebra, disuguaglianza di Bernoulli, Max e Min di funzioni ad una variabile, intorno sferico, punto di accumulazione, Teorema di Bolzano-Weierstrass,
...continua

Esame Analisi Matematica III

Facoltà Ingegneria

Appunto
5 / 5
Integrale doppio,curvilineo,di superficie,curva semplice chiusa regolare orientata,frontiere,ascissa curvilinea,forma differenziale esatta,lineare,chiusa,potenziale,teorema Gauss-Green,divergenza,stokes,integrazione x parti,guldino,a 3 punti,baricentro di dominio,Jacobiano,forma esatta,campo vettoriale conservativo,rotore,campo irrotazionale,domini aperti stellati,superficie regolare,con bordo,sostegno della superficie,flusso campo di forze,probabilità,calcolo combinatorio,disposizioni,permutazioni,combinazioni,coefficiente binomiale,binomio Newton,triangolo Tartaglia,distribuzione binomiale,normale,probabilità condizionata,teorema Bayes,del limite centrale,di DeMoivre-Laplace,disuguaglianza di Chebyshev,variabile aleatoria discreta,continua,legge di distribuzione di bernuolli,geometrica,di Poisson,congiunta,marginale,funzione di ripartizione,media,varianza,deviazione standard,momento centrato,densità uniforme,esponenziale,legge grandi numeri,covarianza,correlazione,regressione,deviazione quadratica media,quantile,percentile
...continua

Esame Analisi matematica II

Facoltà Ingegneria dell'informazione iii

Dal corso del Prof. M. Vallarino

Università Politecnico di Torino

Appunto
4 / 5
Appunti e riassunti delle lezioni di Analisi matematica II della professoressa Vallarino del corso di ingegneria informatica/fisica/telecomunicazioni (polito). Argomenti: serie numeriche, serie di funzioni, serie di potenze, serie di Taylor, serie di Fourier, integrali doppi, integrali doppi impropri, integrali tripli, cambi di coordinate in integrali tripli e doppi, formule per il calcolo di masse, baricentro e momenti.
...continua

Esame Analisi matematica I

Facoltà Ingegneria i

Dal corso del Prof. P. Tilli

Università Politecnico di Torino

Appunto
3 / 5
Appunti dettagliati delle lezioni di Analisi matematica 1 del professor Paolo Tilli (Politecnico Torino). Contiene tutti gli argomenti trattati a lezione, gli esempi fatti (svolti) e 3 esami a quiz finali risolti. Tra gli argomenti trattati: che cosa è una proposizione, la disgiunzione logica, il quantificatore universale.
...continua

Esame Analisi matematica 1

Facoltà Ingegneria

Dal corso del Prof. T. Franzoni

Università Università degli Studi di Pisa

Esercitazione
Corso di analisi matematica 1, università di pisa, cs in ingegneria edile ed architettura, a.a. 20010/11. Docente T. Franzoni gli argomenti sono: Trigonometria, aritmetica, equazioni, disequazioni, successioni, infiniti e infinitesimi,opiccoli, delopital e taylor, integrali,
...continua

Esame Analisi matematica 2

Facoltà Ingegneria

Dal corso del Prof. G. Cinotti

Università Università degli Studi di Pisa

Appunto
Appunti utili per l'esame di Analisi 2, facoltà di Ingegneria edile. questi appunti parlano dei seguenti argomenti : spazi euclidei, dominio, continuità,calcolo differenziale,derivate direzionali, integrali curvilinei e non, integrali multipli, ricerca delle primitive.
...continua

Esame Analisi matematica 1

Facoltà Ingegneria

Dal corso del Prof. M. Gobbino

Università Università degli Studi di Pisa

Appunto
4,3 / 5
Appunti di Analisi matematica 1 per l'esame del professor Gobbino che contengono i seguenti argomenti trattati: teoria degli insiemi, successioni, potenze, continuita funzioni, limiti, integrali, studio delle funzioni, derivate, integrali, introduzione alla teoria degli insiemi.
...continua
Riassunto (colorato) per l'esame di Analisi Matematica II . Teoria con esempi, controesempi. Il riassunto è basato su rielaborazione di appunti personali e studio del libro Analisi Matematica II (Marco Bramanti, Carlo D.Pagani, Sandro Salsa), Università degli studi di Perugia Laurea in Ingegneria Informatica ed Elettronica - Prof. Paola Rubbioni Programma svolto: - Calcolo infinitesimale per curve e funzioni di più variabili (26 ore) Calcolo infinitesimale per le curve: funzioni a valori vettoriali, limiti e continuità; curve regolari e calcolo differenziale vettoriale; lunghezza di un arco di curva; integrali di linea di prima specie. Calcolo differenziale per funzioni reali di più variabili: grafici e insiemi di livello; limiti e continuità per funzioni di più variabili; topologia in Rn e proprietà delle funzioni continue; derivate parziali, piano tangente, differenziale; derivate di ordine superiore, differenziale secondo, matrice hessiana; ottimizzazione; estremi liberi. - Equazioni Differenziali Ordinarie (10 ore) Equazioni differenziali: modelli differenziali; equazioni del primo ordine; equazioni lineari del secondo ordine; teoria qualitativa di equazioni differenziali e sistemi, problema di Cauchy. - Calcolo integrale per funzioni di più variabili e vettoriali (30 ore) Calcolo integrale per funzioni di più variabili: integrali doppi, metodo di riduzione, cambiamento di variabili; calcolo degli integrali tripli. Campi vettoriali: campi vettoriali e integrali di linea di seconda specie; formula di Gauss-Green nel piano; superfici regolari in forma parametrica; area e integrali di superficie; integrale di superficie di un campo vettoriale; flusso. - Integrali in senso generalizzato (5 ore) Integrali in senso generalizzato: casi notevoli; condizioni sufficienti per l’integrabilità in senso generalizzato. - Serie di Funzioni (10 ore) Serie di potenze e serie di Fourier: serie di funzioni e convergenza totale; serie di potenze; serie di potenze in campo complesso e formula di Eulero; serie trigonometriche e serie di Fourier.
...continua
Riassunto per l'esame di Analisi Matematica I, sui teoremi sull'integrazione definita. Gli argomenti trattati sono i seguenti: gli integrali definiti, l'integrazione definita, l'autoveicolo, la funzione integrale, il teorema fondamentale del calcolo integrale, l'integrale di Cauchy, l'integrale di Riemann.
...continua