I materiali pubblicati sul sito costituiscono rielaborazioni personali del Publisher di informazioni apprese con la frequenza delle lezioni e lo studio autonomo di eventuali testi di riferimento in preparazione all’esame finale o della tesi. Non devono intendersi come materiale ufficiale dell’università attribuibile al docente del corso.
…continua

Filtra per

Tutte le tipologie

Ordina

Filtra

Appunti degli studenti per corsi ed esami del Prof. Giannazza Ugo

Esame Analisi 2

Facoltà Ingegneria

Dal corso del Prof. U. Giannazza

Università Università degli Studi di Pavia

Appunti esame
Appunti Analisi matematica 2 - Parte 1. Presi con cura a lezione, con esempi ed esercizi svolti a lezione. Appunti divisi e ridotti leggermente di qualità a causa del vincolo sulla massima dimensione consentita.
...continua

Esame Analisi 2

Facoltà Ingegneria

Dal corso del Prof. U. Giannazza

Università Università degli Studi di Pavia

Appunti esame
Appunti Analisi matematica 2 - Parte 2. Presi con cura a lezione, con esempi ed esercizi svolti a lezione. Appunti divisi e ridotti leggermente di qualità a causa del vincolo sulla massima dimensione consentita.
...continua
Appunti di metodi matematici. Analisi complessa: - Forma algebrica, trigonometrica ed esponenziale; - Prodotto e quoziente; - Esponenziali e radici complesse; - Logaritmo in campo complesso; - Serie di potenze complesse; - Seno e coseno (iperbolico); - Punto all'infinito.
...continua

Dal corso del Prof. U. Giannazza

Università Università degli Studi di Pavia

Prove svolte
...continua

Dal corso del Prof. U. Giannazza

Università Università degli Studi di Pavia

Appunto
5 / 5
Appunti ed esercizi ben fatti e completi, ottimi per avere una preparazione impeccabile in vista dell'esame! Perfetti per raggiungere un voto alto all'esame indipendentemente dall'università che si frequenta. Argomenti trattati: 1. Serie di funzioni e di potenze. Definizione di serie di funzioni. Convergenza puntuale e totale. Teorema di continuit`a della somma. Teorema di derivabilit`a termine a termine. Teorema di integrabilit`a termine a termine. Serie di potenze; centro e coefficienti della serie; raggio di convergenza. Criterio del rapporto e criterio della radice. Propriet`a delle serie di potenze. Serie di MacLaurin, serie di Taylor, funzioni analitiche. Sviluppi notevoli di e^x , sin x, cos x, arctan x, log(1 + x), sinh x, cosh x con dimostrazione. Condizione sufficiente per l’analiticit`a. Espressione dei coefficienti di una serie di potenze in funzione della somma con dimostrazione. Serie binomiale. 2. Funzioni tra spazi euclidei. Funzione reale (o scalare) di n variabili reali, funzione vettoriale di n variabili reali. Dominio; grafico; insieme di livello. Intorno sferico di un punto in R n ; intorno di ∞. Limiti e continuit`a di funzioni di n variabili. Punto interno, esterno, di frontiera. Insieme aperto, chiuso, limitato, connesso. Teorema di Weierstrass. 3. Calcolo differenziale per funzioni scalari. Derivate parziali. Gradiente. Differenziabilit`a in un punto. Dimostrazione che la differenziabilit`a implica la derivabilit`a e la continuit`a. Formula di linearizzazione. Iperpiano tangente. Differenziale. Teorema del differenziale totale. Classe C 1 (A), con A aperto di R n . Derivata direzionale. Formula del gradiente con dimostrazione. Teorema di derivazione delle funzioni composte. Teorema di Lagrange con dimostrazione. Derivate parziali di ordine superiore. Teorema di Schwarz. Matrice hessiana. Differenziale secondo. Classe C 2 (A). Formula di Taylor del secondo ordine con resto in forma di Peano. Ottimizzazione: definizione di punto di massimo (minimo) relativo/assoluto/stretto; punto stazionario. Forma quadratica definita positiva, negativa; forma quadratica semidefinita positiva, negativa; forma quadratica indefinita. Criterio degli 1 autovalori. Criterio dei minori incapsulati. Punto di sella. Teorema di Fermat con dimostrazione. Classificazione dei punti critici tramite la matrice hessiana con dimostrazione. 4. Curve in R m. Arco di curva continua, sostegno della curva; curva semplice, chiusa. Parametrizzazioni di un segmento, di una circonferenza, di un ellisse; curva in R 2 grafico di una funzione, curva in R 2 in forma polare. Curva regolare, regolare a tratti. Vettore tangente. Lunghezza di un arco regolare. Curve equivalenti e cambiamenti di parametrizzazione. Ascissa curvilinea. Punto regolare di una curva di livello e sua propriet`a con dimostrazione. Integrale curvilineo di prima specie e suo significato geometrico e fisico. Invarianza dell’integrale di prima specie per parametrizzazioni equivalenti e cambio di orientamento con dimostrazione. Massa, baricentro, momento d’inerzia. 5. Funzioni vettoriali . Limiti, continuit`a e differenziabilit`a per una funzione vettoriale di pi`u variabili reali. Matrice Jacobiana e formula di linearizzazione. Differenziale. Teorema di derivazione delle funzioni composte. Jacobiana della funzione inversa con dimostrazione. 6. Superfici in R 3. Definizione di superficie, sostegno. Superficie cartesiana. Superficie di rotazione. Superficie regolare. Piano tangente, vettore normale; propriet`a di una superficie di livello in un punto regolare con dimostrazione. 7. Applicazioni del calcolo differenziale . Funzioni implicite - Teorema di Dini, esistenza e continuit`a della funzione implicita. Derivabilit`a della funzione implicita con dimostrazione. Retta tangente ad una curva. Estensione a pi`u variabili. Piano tangente ad una superficie. Teorema di Dini per sistemi. Estremi vincolati. Definizione di punto di estremo vincolato. Metodo parametrico (vincolo esplicitabile). Metodo dei moltiplicatori di Lagrange. Condizione necessaria (con dimostrazione). Funzione Lagrangiana. Moltiplicatori di Lagrange nel caso di m vincoli. 8. Calcolo integrale in più variabili . Somme di Cauchy-Riemann di una funzione limitata in un rettangolo. Funzione integrabile secondo Riemann in un rettangolo. Integrale doppio e suo significato geometrico. Formule di riduzione su rettangoli, con dimostrazione per funzioni continue. Esempio di funzione non integrabile. Definizione di funzione integrabile in un insieme limitato. Insieme y-semplice, x-semplice, regolare. Insieme misurabile e sua misura. Esempio di insieme non misurabile. Caratterizzazione degli insiemi di misura nulla. Teorema di integrabilit`a delle funzioni discontinue su un insieme di misura nulla. Formule di riduzione su insiemi semplici e significato geometrico. Propriet`a dell’integrale doppio. Cambio di variabili negli integrali doppi. Coordinate polari. Cenni alla costruzione dell’integrale triplo. Insieme misurabile e sua misura. Integrazione per fili e integrazione per strati. 2 Cambi di variabili negli integrali tripli. Coordinate sferiche e coordinate cilindriche. Area di una superficie semplice e regolare. Area di una superficie di rotazione. Integrale di superficie. 9. Campi vettoriali. Campo vettoriale. Linee di campo. Operatori differenziali: gradiente, rotore, divergenza e laplaciano. Campo irrotazionale. Campo solenoidale. Integrale di linea di un campo vettoriale. Lavoro e circuitazione. Campi conservativi e loro propriet`a. Potenziale. Formula del lavoro per un campo conservativo con dimostrazione. Conservazione dell’energia meccanica durante il moto sotto l’azione di un campo conservativo con dimostrazione. Legame tra irrotazionalit`a e conservativit`a. Dimostrazione che un campo conservativo `e irrotazionale. Insiemi semplicemente connessi. Teorema di Green con dimostrazione. Superfici orientabili. Superfici regolari a pezzi. Flusso di un campo vettoriale. Bordo di una superficie orientabile e sua orientazione. Teorema della divergenza in R 2 e in R 3 con dimostrazione. Legge di Gauss. Teorema di Stokes.
...continua

Dal corso del Prof. U. Giannazza

Università Università degli Studi di Pavia

Appunto
3,5 / 5
Riassunto schematico/formulario utile per risolvere esercizi e fissare i concetti fondamentali, in vista dell'esame. Perfetti per raggiungere un voto alto all'esame indipendentemente dall'università che si frequenta. Argomenti trattati: 1. Serie di funzioni e di potenze 2. Funzioni tra spazi euclidei. 3. Calcolo differenziale per funzioni scalari. 4. Curve in R m 5. Funzioni vettoriali . 6. Superfici in R 3. 7. Applicazioni del calcolo differenziale . 8. Calcolo integrale in più variabili . 9. Campi vettoriali.
...continua