vuoi
o PayPal
tutte le volte che vuoi
2. esercizio
f(x) = (x + |x – 1|) / 4x
x – 1
(x – 1) se x ≥ 1
(1 – x) se x < 1
x ≥ 0
D(g): R – {0}
x (x – 1)/4x, se x ≥ 1
(1)
x (x – 1)/4x + x ≠ 1
(2)
x + x – 1/4x
N: |x – 1| > x – 1
0.4x > 0
lim x →+ ∞
I(g): 4x + x – 1 / 4x
x – 1 > x
x – 1 < x
2x ≥ 1/2
x < 0 ∪ x ≥ 1/2
Sequo:
4x + x – 2 > 0
x = -1 ± √17 / 8
-1 - √17 / 8
-1 + √17 / 8
lim 4x + x → x = + ∞ → cera asinto obliquo
1/4 - 1
m = 1
y = x + 1/4
g = 1/2
y = x + 9/4 → asintoto obliquo 1° per x → +∞
limx→-1 4x2+x-1/4x = +∞
g(x) = (8x+1)(4x)-(4)(4x2+4x-1)/32x2+4x-(16x2+9)
= 16x2 -4/(4x)2 = 4 (4x2 -1)/(4x)2 = 16x2-4/4x2-9 = 4x2/9
g'(x) + g''' (4x2+1) = 16x2-9/16x2
g''' = 32 x (16x2)(16x2)-(16x2+32x)/(16x2) - 512x2 - 512x3 - 128x/16x3 = -128x
4x=1 → 0 → 4x2-1, x1,2=∉R
g(x) sistema cercare + - x - + ∪ ∩
g(x) = 4x2 - x + 1 / 4x
segno: 4x2 - x + 1
limx→0 4x2 - x + 1/4x = x
4x = ∞ → asintoto obliquo
limx→-∞ (x4 - x2 + x - 1) = (x4 - x24x) m = 1
limx→-∞ 4x2-x+1/4x = (4x6 + x + 4x - x + 1 - 4x)
= -x + x(-1-x2)/4x = -x/9 = -9
y = x - 9/4 pv x→∞
limx>0 4x2 - x + 1 - ∞/9
limx→∞ g(x) = +∞
g(x) = (1)(x³-2x) - (x-3)(3x²-4x)
= x³-2x - (3x³-9x²-4x+12x)
-----------------------------------------
(x³-2x)²
= x³-2x - 3x³ + 9x²-4x²+12x
= -2x³ + 11x - 12x
--------------------------
(x³-2x)²
= -(2x³+11x-12)
(x³-2x)² > 0
x(-2x + 11x-1)
-------------------------
(x³-2x)²
(xⁿ-2x)² > 0, ∀x∈R
x > 0
2x - 11x + 12 < 0
∆ = 25, x₁₂ = 1 | 3/2
Valori interni perché >
g(x) = 0 as orizzontale
lim (x→∞) x = x|x(1 - 2/x)
lim (x→-∞) x→∞ x-3 = -∞
x = 0 as verticale
lim (x→0) x=3 = -1 | xⁿ+3 = ∞
lim (x→0) xⁿ-∞ = 1
x = 2 as verticale
g''(x) =
Wg(x) = e2x / (ex-1)
- Dom: e-1 + 0, ex + 1, ex = 1
- x ≠ 0
- lim x→0
- ex x (ex -1 ) ≠ 0
- x ≠ x ∀ x ∈ ℜ
- ex ≥ 0 ex > 0 ∀x∈ℜ
- ex > 0 ex ≠ 0
- ex = 1 ⇔ ln e = 0
- x = 0 x > 0 (x > 0)
- No simmetrie
- lim x→+∞ e2x / (ex-1)= -∞
- lim x→-∞ e2x / (ex-1)= -∞
- x=0 as verticale
- lim 2x→∞ e2x / (ex-1)= +∞ as orizzontale
- 20x - e2x-2
- (ex-1)
- ⦸= 0
- 2t - e2x-2 ≥ 0
- 2t + 2t - 2 ≥ 0
- 2 - 2x + 2 = 0
- 2 t2 + 2x ≤ 0
- e2x (e-2) ≥ 0
- ex ≥ 0 ∀x
- x ≠ 2
- ex ≥ 2
- ln ≥ ln e
- x = ln
- f(ln) = e2ln / eln-1 = -4
g(x) = (ln(x)2-(x-1)(eln(x-1)) = (ln(x)-1)-(2(ln(x-1))x
(ln(x)-1)4
= lnx+1-2lnx+2lnx-2
(ln(x-1)4
= lnx+1-2lnx+2lnx-2
x(ln(x-1)4
= - e -
x(lnx-1)5
lnx>1
lnx>0
lnx-1 > -1 x x > 0 x
= - x ↔ e
b(x):
x > -1 -ex e y =
.
x > 0
(1- x)
x > 0
ek > e0
lim
x- > 0 1 / ek
(x -1x) / x - eo
x-o as ven
f(x) - parola
e2x-1 / 0
x > 0 1 / e0 * 1/ x
s > 1
2x > 1
x > 0/
x3 x 0 > 0
e 1/2
s + x
g(e1/2) = 0
δ = (x-1)= 1
1/ex+1 = ee/2 = (1 - 1/2 )