Autoref3874d
Genius
4 min. di lettura
Vota

In questo appunto di geometria per le scuole medie sono definite le diverse tipologie di angoli in relazione alle loro ampiezze. Nel seguente appunto sono introdotti gli angoli: concavo e convesso, acuto, ottuso e retto e vengono specificate le proprietà di ognuno di esso e le caratteristiche che differenziano l'uno dall'altro. Alla fine del testo è proposto un breve esercizio di ripasso che permette di confrontarsi con le nozioni teoriche apprese in questo appunto.

Indice

  1. Definizione di angolo e ampiezza
  2. Angolo concavo e convesso
  3. Angolo retto
  4. Angolo acuto e angolo ottuso
  5. Esercizio
  6. Soluzioni

Definizione di angolo e ampiezza

Con il termine angolo si definisce ognuna delle due parti in cui il piano è diviso da due semirette che hanno l'origine in comune.

L'angolo ha degli elementi che lo caratterizzano:

  • Vertice: punto di intersezione tra le due rette, detto anche origine
  • Lati: le due semirette che hanno l'origine in comune nel vertice
  • Ampiezza: parte di piano racchiusa tra i due lati del triangolo

L'ampiezza di un angolo piano viene espressa, per convenzione, utilizzando i gradi sessagesimali. Il grado è definito come la trecentosessantesima parte di un angolo giro. L'ampiezza di un angolo giro misura 360°, l'angolo giro è quello che misura la maggiore ampiezza possibile, per questo motivo l'ampiezza di un angolo in gradi può variare da (angolo nullo) a 360° (angolo giro). All'interno di questo range di ampiezza troviamo due angoli "particolari": l'angolo retto che misura un'ampiezza di 90° e quello piatto che misura 180°.

Per ulteriori approfondimenti sugli angoli vedi anche qua

Angolo concavo e convesso

Dopo aver definito che cosa è un angolo e come è possibile misurarlo, possiamo passare all'introduzione del concetto di angolo concavo e angolo convesso. Con angolo concavo si identifica quella porzione di piano, delimitata dai due lati, che contiene i prolungamenti di tali lati. Viene definito angolo convesso invece, quell'angolo che non contiene i prolungamenti dei suoi lati.

Angolo retto

Come scritto nel primo paragrafo, possiamo definire l'angolo retto come uno degli angoli particolari. Proviamo a capire come identificarlo e come rappresentarlo dal punto di vista geometrico. Tracciamo un angolo piatto, ad esempio

[math] A\widehat{V}B [/math]

, e costruiamo la sua bisettrice.
La semiretta s passante per VP è bisettrice dell'angolo

[math] A\widehat{V}B [/math]
(figura ).
Angoli e loro ampiezza: angolo retto, acuto e ottuso articolo

Pertanto i due angoli

[math] A\widehat{V}P [/math]

e

[math] B\widehat{V}P [/math]

sono uguali e vengono detti angoli retti .
Se ne ricava quindi la seguente definizione: l' angolo retto è la metà di un angolo piatto, misura quindi un'ampiezza di 90°.
Per indicare l'angolo retto si può anche usare il simbolo: ∟

Angolo acuto e angolo ottuso

Prendendo come riferimento l'angolo retto e l'angolo piatto, possiamo dividere gli altri angoli mettendo in relazione la loro ampiezza con quella degli angoli appena citati. In sintesi possiamo trovarci davanti a due possibili configurazioni:

  • Angolo Acuto
  • Un angolo minore dell'angolo retto e diverso dall'angolo nullo (0°) si dice acuto (figura).
    Angoli e loro ampiezza: angolo retto, acuto e ottuso articolo
  • Angolo Ottuso
  • Un angolo maggiore dell'angolo retto e minore dell'angolo piatto (180°) si dice ottuso ( figura ).
    Angoli e loro ampiezza: angolo retto, acuto e ottuso articolo

Esercizio

Di seguito vengono proposte due tipologie differenti di esercizi: il primo chiede una rappresentazione grafica di diversi angoli, il seconod propone una serie di frasi da completare con parole chiave:

Disegna due angoli retti e un angolo piatto.

Completa le seguenti frasi:
a. un angolo retto è la metà di un angolo ……………………;
b. un angolo è piatto è il …………………… di un angolo retto ;
c. un angolo retto misura ……………………;
d. un angolo piatto …………………… 180°;
e. un angolo giro misura …………………….

Soluzioni

(a. piatto; b. doppio; c. 90°; d. misura; e. 360°)

Per ulteriori approfondimenti, esempi e operazioni con gli angoli vedi anche qua

Domande e risposte