vuoi
o PayPal
tutte le volte che vuoi
∫A -2x-1/x²-2x+2 dx + ∫B 1/x²-2x+2 dx
x+∫ -2x-1/x²-2x+2 dx
(-2x-1)[x²-2x+2]
∫ x · ∫ 2x-1/x²-2x+2 dx + ∫ 1+[-2-2]
x + ln|x²-2x+2| + ∫ 1/x²-2x+2 + 4 ∫ 1/x²-2x+2
∫ x²+1/x+2 dx ⇒ N(x)≥ D(x)|
x²+1/x-1 (-x²-x)
x²+0x+1/x²-x+0
x²+0x+2/x²-x+0 ∫ -k + 1/x-1
∫ x2-2⁄x+2 = ∫ Q(x) + A ⁄ x + B ⁄ x2 + C ⁄ (x-1)
∫ x+2 dx + ∫ -2 ⁄ x+2 dx
-∫ x dx + 2∫ 1 ⁄ x+2 dx
x2⁄2- x + 2ln|x+2|+c
∫ dx ⁄ x3(x-1) - ∫ 1⁄x(x-1)
x = 1
∫ -1 ⁄ x(x-1) dx = A ⁄ x + B ⁄ x2 + C ⁄ x-1
A x(x-1) + B(x-1) + Cx2⁄x2(x-1) ⇒ Ax2-Ax + Bx - B + Cx2⁄x2(x-1)
x2(A+C) + x(B-A) -B = 1
C=1
A+C = 0
B-A=0
B=1
∫ 1⁄x2-x3 dx = ∫ 1⁄x dx + ∫ -1⁄x2 dx + ∫ 1⁄x-1 dx
-ln|x| - x-1⁄-1 + ln|x-1|+c
A∫1/(3x+2) dx + ∫1/(x+2) dx - ∫1/(3x+1) dx + ∫1/(x+2) dx
= -1/3∫1/(3x+2) dx + ∫1/(x+2) dx - 1/3 ln|3x+1| + ln|x+1| + C
Esercitazione esame
∫(ex/(e-x - ex - 2)) dx ⇒ ∫(t/(t2 - 6t - 2)) dt N(x) < D(x)
t2 - 6t - 2 = 0 Δ = b2 - 4ac = 0 1-6(7-2) = 9
(t-2) = (-b ± √Δ)/2a = 1 ± √9/2 ⇒ 11+32 = 2
a1(t-1) · a2(t-2) = 1 · (t-1) (t-2) ⋯ (t-2) (t-2)
G = A/(t-1) + B/(t-2) ⇒ N(x) = A(t-2) + B(t-2)
[6/t4(t+2)] ⇒ A(t-2) + B(t-2)-> A + B = 2A + RE - B = E
{ A(B(A+B) = 2 ⇒ t A = 1 - B
{ -2A - B = 0 ⇒ -2(1-B) - B = 0 = 2 - 2B - B = 0 ⇒ B = 2
-3/2 t1/2
x-1/2
-p/2√x2
+p/√x2 x
/x2
-b 2
/√x2
√b - 2
/√x2
(x+2)/
Stabilire se f è integrabile in [1; +∞]
esolendo il seguente personale
∫ 1/x3/2(x±2) dx: N(x) > D(x)
x2(x±2)
∫ 1/x3/2(x±2) dx
∫ x2{A/x + B/x2
(x±2) = C
/x±2
∫ 1/x2(x±2) dx = A/x
+ B/x2 + C/x±2 =
= A · x(x±2) + B(x±2) + Cx2/
x2(x±2) = 1
A x2 + A x + B x + B + C x2 =
= 0 x2C A C).) +x(A +B) B=1/
x2(x±2) x2(x±2) x20(x±2)
{
A + C = 0
{
C= 1
A + B = 0
A = -2
B = 1
B=1
7
∫ dx = ∫ A=-2 dx + ∫ 1/x
7 dx
x5/2
x
x2
1
∫ 1/x±2 dx = ∫ 1/x dx + ∫ 1/x2 dx + ∫ 1/x±2 dx