Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Criterio del rapporto
limk→∞ |ak+1 / ak| = L R = 1/L
Criterio della radice
limk→∞ k√|ak| = L R = 1/L
Criterio di Leibniz
1. limk→∞ qk = 0
2. decrescente → converge
Esercizi
- ∑k=3 (5k / 2k) (x - 3)k R = 2 I = (-2, 2) x0 = 3
- ∑ k! (x + 2)k R = 0 I = [-2, ?]
- ∑ (1 / √(1 + k2)) xk x = 0 R = 1 I = [1, 1]
Σ ⎦k=1∞ ∅ (3k + 1)k
R=∞
Σ ⎦k=0∞ ∅ (1k2x)k
x0=1 R=2 I=[2,6]
Σ ⎦k=0∞ ∅ (1k2x)k
((-1)kk2) Converge
Σ ⎦k=0∞ (∅2)k = Σ1k2 Converge
Σ ⎦k=1∞ (1k2)(-2k) = Σ(-1)kk2 Converge
Σ ⎦k=1∞ 1k2 Converge
Σ ⎦k=1∞ (1k)(x+5)k
x0=5
I=[6,-4]
Σ ⎦k=3∞ (x3k2)k Converge
Σ ⎦k=1∞ 1k (∅1k2)k Converge
Σ ⎦k=1∞ (1√(k+2k))xk
x0=0 R=2 I=(-2,2)
limk→∞
⎦k=∞ (√k+2k)1 Approx. ½
R(x,y) = √x² + y²
4 - x² ≥ 0
4 - y²
R(x,y) = log (1 - |x|) - log (2 - |y|)
{
1 - |x| > 0
2 - |y| > 0
{
|x| < 1
|y| < 2
3/9/14
5. \( f(x, y) = (1 - 2x) e^{x-y^2} \)
\(\frac{\partial f}{\partial x} = -2 e^{x-y^2} + (1 - 2x) e^{x-y^2} \)
\(\frac{\partial f}{\partial y} = ( \frac{-2y}{e^{x-y^2}}) \)
\(\frac{\partial f}{\partial x} = e^{x-y^2} (-2x-1) \)
(1-2x) - 2xe^{x-y^2} = (1-2x - 2x)e^{x-y^2} \)
\(\Delta = 0 \Rightarrow \left\{ \begin{array}{c} -2x-1=0 \\ (1-2x) - 2y = 0 \end{array} \right. \quad \Rightarrow \left\{ \begin{array}{c} -1 - x = 1 \\ (1+1-2y) = 0 \end{array} \right.\)
\(\left( -\frac{1}{2}, 1 \right) \quad massimo \)
\(H \left( \frac{1}{2}, 0 \right) = \begin{pmatrix} -2 e^{-\frac{1}{2}} & 0 \\ 0 & -4e^{-\frac{1}{2}} \end{pmatrix} \quad = \quad \begin{pmatrix} -2e^{-\frac{1}{2}} & 0 \\ 0 & -4 e^{\frac{-1}{2}} \end{pmatrix}\)
\(\frac{\partial^2 f}{\partial x^2} = -2 e^{x-y^2} - 2 e^{x-y^2} + (1 - 2x) e^{x-y^2} \quad \Rightarrow -ae^{-\frac{1}{2}} + 2 = 2 \rightarrow (1-e^{-\frac{1}{2}}) \)
\(\frac{\partial^2 f}{\partial y^2} = (1-2x) \cdot \left[ 2 \cdot e^{x-y^2} - 2y(-2y) e^{x-y^2} \right] \quad \Rightarrow 2 \cdot (1-2e^{-\frac{1}{2}}) \)
5-
f(x) = x2 + x · ex
u = x2
z = x
w = ex
g(u, z, w) = u + sen(z) · w
h = g ° f = x2 + ex sen(x)
(x3 + ex sen x)
h(x) ∈ R - R
h(x) = 3x2 + ex sen x + ex cos x
∂f1 / ∂x = ?x
∂f2 / ∂x = 1
∂f3 / ∂x = ex
Dg(u, z, w) = (∂g / ∂x, ∂g / ∂y, ∂g / ∂w)
( 1 ) ( z ) sen(z) 1
z
( 1 ) ( z 4w cos(z) sen(z) )
ex
= 2x + 4u cos z + exsen z = 2x · (x) + x2ex cos x ,
+ exsen x
= 3x2 + excos x + exsen x
RISOLUZIONE
∬∬ (3 ρ cosθ - 1/9 ρ3 sen3θ) a b ρ dθ dρ =
= ∫02π ∫01 3ρ cosθ - (1/3 ρ senθ)2 1/3 ρ dρ dθ = const.
= ∫02π ∫01 3ρ cosθ ∫01/27 ρ3 sen2θ dθ dρ = *
[cosθ perde qualche parte su simmetrico]
* = - ∫02π sen2θdθ ∫01/27 ρ3dρ = -π/4 ⋅ 1/27
= - ∫02π senθdθ ∫01 1/27 ρ3dρ = -π/27 x
3
D = { (x, y) ∈ℝ2; 0 ≤ x ≤ 1, x ≤ y ≤ 2x }
φ(x,y) = x y
∬ω x y dx dy = ∫01 dx x ∫x2x y dy =
= ∫01 x dx [ y2/2 ]x2x = ∫01 x dx [ 2xx/2 - x2/2 ] =
= ∫01 2x x dx - ∫01 x3/2 dx = 2 [ 3/ln2 [3/2] ]1/0 - 1/2 [ x4/4 ]1/0 =
= 2 ⋅ 1/3 - 1/2 = 1/9 = 2 - 3/8 -8 ⋅ 1 ⋅ 3/24 = 16 - 3 ⋅ 3/24
∋ Θ
z = 0
(x, y, z) ∈ ℝ3
x2 + y2 + z2 ≤ 3, x2 + y2 ≤ 1, z ≥ 0
(0, 0, 4/6)
xb = 1∯ |J|∬x dx dy dz = 0 = yb
∬ √3 - x2 - y2 ∫ 1 dz dx dy = ∬ √3 - (x2 + y2) dx dy
x = ρ cos Θ
0 ≤ ρ ≤ √1
dx dy = ρ dρ dΘ
y = ρ sin Θ
0 ≤ Θ ≤ 2π
∬ 0 2π √3 - (ρ2) ρ dρ dΘ = ⌠0 ⌠√3 ρ3 ρ dρ ⌡ dΘ =
-1/2 ⌠0 (3 - ρ2)1/2 dρ ⌠2π dΘ = -1/2 [2(√3 - ρ2)3/2/3] 2π = 3,157
2/3 (27 - 16√2)
zb = ∬ A ⌠z dx dy dz/∬1|J|
(√3 - x2 - y2) = 1/∬4 (√z) dz dx dy
1/8,157⟦1/2 ⌠A ⌠1/2 √3 - x2 - y2 dx dy
⌠0 ⌠2π (3 - ρ2) ρ dρ dΘ
-1/8,157⌠0 ⌠2π -ρ(9 - ρ2) ρ dρ dΘ = π/2 ⟪1/⌡8
∫∫ 6 z + ∫∫ –2 x = 27 -
x = a ρ cosθ
y = b ρ x cosθ
z = c ρ cosθ
&frac;{3}{2} ρ sinθ
e^kz dè = e b ×
-∫ π⊃2; ρ⊃2; sinθ χ y φ
∫∫ &frac;{3}{2} 1 (-ω)
s1 = &frag;{1}{3} z = 27
-∫∫ -2 φ
∫∫ φ⊃2; sin y φ
+ 8 ∫∫ (
-8/2 ∫∫
π ∫∫
-8/2 &frac{1}{4}
+ 8/2 (
φ⊃2; 1
-8 1 (