Che materia stai cercando?

Tutorato Analisi II testo

Serie di potenze. Richiami sulle serie numeriche: criteri di convergenza, convergenza assoluta e convergenza semplice. Serie di potenze in campo reale: proprietà principali; derivazione e integrazione. Serie di Taylor e di MacLaurin di alcune funzioni elementari.
Calcolo differenziale. Funzioni reali di più variabili reali: rappresentazione grafica; limiti e continuità. Derivate... Vedi di più

Esame di Complementi di analisi e statistica docente Prof. B. Ferrario

Anteprima

PAGINE

7

PESO

2.25 MB

PUBBLICATO

+1 anno fa


DESCRIZIONE ESERCITAZIONE

Serie di potenze. Richiami sulle serie numeriche: criteri di convergenza, convergenza assoluta e convergenza semplice. Serie di potenze in campo reale: proprietà principali; derivazione e integrazione. Serie di Taylor e di MacLaurin di alcune funzioni elementari.
Calcolo differenziale. Funzioni reali di più variabili reali: rappresentazione grafica; limiti e continuità. Derivate parziali, derivate direzionali e gradiente. Differenziabilità. Derivate di ordine superiore. Derivazione parziale di funzioni composte. Sviluppi di Taylor del primo e secondo ordine. Cenni di calcolo differenziale per funzioni a valori vettoriali: matrici Jacobiane. Estremi relativi liberi di funzioni a valori reali: punti stazionari e loro classificazione.
Integrali multipli. Integrali doppi: definizione e proprietà principali; applicazioni alla Geometria e alla Fisica. Calcolo degli integrali doppi e tripli: formule di riduzione; cambiamento di variabili.
Integrali di linea e integrali di superficie. Curve in forma parametrica: definizione; lunghezza di una curva regolare; retta tangente e piano normale; ascissa curvilinea. Superfici in forma parametrica: prodotto vettoriale fondamentale e piano tangente; area di una superficie; superfici di rotazione. Integrali curvilinei. Integrali di linea di campi vettoriali e applicazioni alla Fisica. Campi conservativi e indipendenza dal percorso; potenziale scalare. Integrali di superficie e applicazioni alla Fisica. Gli operatori rotore e divergenza. Il teorema di Green nel piano. I teoremi di Stokes e della divergenza nel piano e nello spazio.
Statistica:
Assiomi della probabilità. Probabilità condizionata. Teorema di Bayes. Indipendenza. Speranza matematica, varianza e momenti. Distribuzioni notevoli di v.a. discrete e continue. Disuguaglianza di Chebyshev. La legge dei grandi numeri. Leggi congiunte. Il teorema centrale del limite. Successioni di osservazioni indipendenti e gaussiane e leggi di statistiche notevoli delle stesse (t di Student, Chi quadrato).
Statistica inferenziale: stime per intervalli per media e varianza.


DETTAGLI
Corso di laurea: Corso di laurea in ingegneria industriale
SSD:
Università: Pavia - Unipv
A.A.: 2014-2015

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Lociano94 di informazioni apprese con la frequenza delle lezioni di Complementi di analisi e statistica e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Pavia - Unipv o del prof Ferrario Benedetta.

Acquista con carta o conto PayPal

Scarica il file tutte le volte che vuoi

Paga con un conto PayPal per usufruire della garanzia Soddisfatto o rimborsato

Recensioni
Ti è piaciuto questo appunto? Valutalo!

Altri appunti di Complementi di analisi e statistica

Analisi 2 - parte 1
Appunto
Metodi Matematici
Appunto
Metodi Matematici, Tutorato
Esercitazione
Esercizi preparazione Esame (base) Numerical Methods in Engineering Sciences
Esercitazione