vuoi
o PayPal
tutte le volte che vuoi
19 dic 2017
CN Ve+c≥3m
l > 3 ⇒ 1 volta PER
F = 1/5 ql
Sconnetto a Rotazione
CN: Ve+c≥3m
l+l > 3 . 3
8<9 ⇒ 1 volta L'ABILE
Numero le incognite PER
- x, y, z, ξ
eq. congruenza
- PBA = PBC
- PCB = PCD
- EQ NODO
- EQ PIANO
EA MODO
- -x-y+9l2/2 = 0
- -x-y = -9L2/2
eq piano
TBA-TCD+ qL-1/5 RL
A:∫ x - TBAL =
= -TBAL = -x/7
TBA= x/7
D:∫ z-TCDL=
= -TCDL = -z/-7 = TCD = z/7
x/L - z/L = -9L+1/5 qL
9L - x/7 = -4/5θ L ⇒ x-z = -9/5 qL2
∫L/6ES {(2x) + y} = L/6ES [(2y+2)]
L/6ES [(2z-4y)] = L/6ES [(2z)]
-x-y = -q/2 L2
x-z = -4/5 qL2
2x + A = 2y + z
-2θ - y = 2z - A
-x-y = -1/2 qL2
x-z = -9/5 qL2
{ 2x-2y-2z+A =
{ x = 19/60 qL2
{ y = 49/60 qL2
{ z = θ qL2
A = 27/60 qL2
1/5 qL2
dmin > 3 √(204,16)(106)(5,27a) / (448,95)(200)
= 22,88 + 10% = 25,16 mm
≈ 25 mm
dmin = 25 mm
Atot = 34(25)2 = 2 1250 = 2,12 x 109 mm2
Sxp = 448,15 (25)2 = 1 75371093,8 = 1,75 x 108 mm4
1) CALCOLO TENSIONI NORMALI ESPRESSA SNE
σz = Nmax / Atot + [Mmax / Sxp] . y
corde
y(a) = (4,73)-(4,73)(e3) = 428,25 mm = 222,498MPa
y(b) = (3,73)-(3,73)(25) = 93,25 mm = 175,129 MPa
y(c) = [0]
= 0 MPa
y(d) = (1,22a) = (1,12)(25) = 106,75 mm = 200,169 7 MPa
y(e) = (-5,27) = (-5,27)(23) = 131,75 mm = 247, 66 6 MPa
2) CALCOLO V2
∮ = N / Jx + ∛8 x
Sx(b) = (b)(h)(Gb . 2) = (5a)(4,123a)2
= 21,15a3 = 3,3 x 105 m3
Sx(c) = (b)(h)(Gc . 2)
(a:3,73:1)(1,8a:c) = 6,93 a3
= 102,82 = 2,55 t/ 3148x
F = 23Hc3 = 414 a
= 2
Tratto
AB
- O
- -128ql2 / 460
- -74ql2 / 460
BA
- -64ql2 / 460
- -128ql2 / 460
- 74ql2 / 460
BC
- 64ql2 / 460
- 94ql2 / 460
- -220ql / 460
CB
- 10ql2 / 460
- 74ql / 460
- -220ql / 460
CO
- 10ql2 / 460
- 220ql / 460
- 74ql / 460
DC
- O
- -240ql / 460
- 74ql / 460
q = 10 kN/ml = 5 mGom = 200 MPa
HMAX = -64 / 460 (10 kN/m) (5 m)2 = -341.78 kN m = 34.78 x 106 N mm
TMAX = -128 / 460 (10 kN/m) (5 m) = -13.91 kN = -13.91 x 103 N
NMAX = -74 / 460 (10 kN/m) (5 m) = -8.04 kN = -8.04 x 103 N
eq di congruenza
φBA = φBC
φCB = 0
eq xodp
eq piano
- 2qES{[(2x) - (- 2⁄3q12)] - (-3⁄3q12)]} = (2)qES[(-2y + z)] + A⁄2L
- 2qES{(-2x + 9q12)} = 2(-2y + z) + A⁄2
- 2qES{(-2x + 2y) + A⁄2
- x + 4y = 1⁄2q12
- -y - z = 0
- -4x + 2y + A⁄2 = 0
- x + 4y = 1⁄2q12
- -4 - z = 0
- x = 1⁄2q12
- y = 0
- z = 0
- A = 0
- 2q12
- V
- 1
- 1/5
- 1
- -2,5
V = 1 - 2,05
1 - 2,05
↑13
(+) (-) 2,5
↑φ
∝1
∝3