vuoi
o PayPal
tutte le volte che vuoi
P.163n.265
f(k) = (1-k) / (k2 + 3)
1. Dominio
∀k∈R → Df = R
2. Intersezioni con gli assi
f(0): (1-0) / (02 + 3) = 1 / 3 → Iυ = (0; 1/3)
f(k) = 0 → (1-k) / (k2 + 3) = 0 → 1-k=0 ↔ k=1
3. Positività
f(k) = (1-k) / (k2 + 3) > 0 ↔ (1-k) > 0 per k < 1 k2 + 3 > 0 per ∀k∈R
4. Asintoti
lim (1-k) / (k2+3) k→∞
lim k (1 / k - k) / (k (k2/k)) k→∞
lim k→∞ 1 / k = 0
lim (1-k) / (k2+3) k→+∞
lim k→+∞ -1 / k
m= lim k→∞⁺ f(k) / k = lim k→∞ -1 / (k2) = -1 / ∞ = 0
5. Monotonia
f(k) = (1 - k) / (k2 + 3)
f'(k) = -1 (k2 + 3) - (1 - k) (2k) / (k2 + 3)2
= (-k2 - 3 - 2k + 2k2) / (k2 + 3)2
= k2 - 2k - 3 / (k2 + 3)2 > 0
φ1,2 = 2 < (√1 + 12) / 2
(x + 3) (x - 1)
MAXx ∈ -1, 1/2; MINx ∈ -1, 1/6
MAXxe(-1, 1/2)
MINxe(3, -1/6)
f(x) = 1-x/x2+3
Studiare la funzione
f(k) = k4 - 2k2
1. Dominio
X = ℝ
2. Positivita'
f(k) > 0 <=> k4 - 2k2 > 0 <=> k2 > 2 <=>
<=> k < -√2 ∧ k > √2
3. Ricerca degli Asintoti
limk->∞ f(k) = limk->∞ (k4 - 2k2) = +∞ = limk->∞ f(k)
m = limk->∞ (f(k)/k) = limk->∞ (k3 - 2k) = ∞
4. Studio della Derivata Prima
f(k) = k4 - 2k2 => f'(k) = 4k3 - 4k > 0 <=>
<=> k3 - k > 0 <=> k3 > k <=>
<=> -1 < k < 0 ∧ k > 1
f(-1) = 1 - 2 = -1 => MINDEB1 = (-1, -1)
f(0) = 0 => MAXREL = (0, 0)
f(1) = 1 - 2 = -1 => MINDEB2 = (1, -1)
f(h) =
h2/1+h - 3/ 2 ln (h+1 )/h
MINxT = (1; 1/2 + 3 ln 2/ 2)
MAXxT = (-3/2;-√3 /2;f(-3/2;-√3/ 2))
= h2 + 2h/ (1+h)2 + 3 /2 h / ( h + 1 ) - ( -1 / h2 ) = h2 + 2h - 3h / (1 + h)2 2h2(1+h)2
= 2h2(h2 +2h) - 3h(1 +h ) / 2h2 (1 + h )2 = 2h4 + 4h3 - 3h - 3h2 < 0 / 2h2 (1 + h )2
2h4 + 4h3 - 3h2 - 3h < > 0
2h4 + 4h3 - 3h2 - 3 / h < > 0
8)
limk→+∞ e-k/3k + k + 1 = e-∞/+∞ = 0
9)
limk→0 arctg|k|·cos(1 + log|k|)
10)
limk→∞ √k2 - 5k + 6 + k = limk→∞ √k2(1 - 5/k + 6/k2) + k
= limk→∞ k√1 + k = limk→∞ 2k = -∞
11)
limk→1 (k-1)2/e3(k-1)-1 = 0/0 = limk→1 3(k-1)/e3(k-1)·6(k-1) = 0/0
= limk→1 3/e3(k-1)2/36(k-1)2 + e3(k-1)(k-1)2·6 = 3/6 = 1/3
12)
limk→1 tg(πk)/k-1 = 0/0 = limk→1 1/cos2(πk)
= limk→1 1/1 = 1 = 1
13)
limk→π senk/k-π = 0/0 = limk→π cosk/1 = -1/1 = -1