vuoi
o PayPal
tutte le volte che vuoi
Numerical Methods for Differential Eqns
Stokes Problems
- Stokes equation
- \( u : \Omega \rightarrow \mathbb{R}^d \) (We focus on 2D problems)
- \( u(x,y) = \begin{pmatrix} u_x \\ u_y \end{pmatrix} \)
- \(\nabla u = \begin{pmatrix} \frac{\partial u_x}{\partial x} & \frac{\partial u_x}{\partial y} \\ \frac{\partial u_y}{\partial x} & \frac{\partial u_y}{\partial y} \end{pmatrix}\)
- \(\text{div} \, u = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} = \text{tr}(\nabla u)\)
- \(A : B = \sum_{i,j=1}^{d} a_{ij} b_{ij} = a_{11} b_{11} + a_{12} b_{12} + b_{21} a_{21} + a_{22} b_{22}\)
- \(\text{div} \, u = \text{tr} (\nabla u) = \nabla \cdot u = f\)
- \(I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)
- Stokes System
- \(\text{div} \, \sigma(u,p) + g = 0\) (Conservation of momentum)
- We focus on fluids, Incompressible Newtonian fluids
- \(\sigma = 2\mu \mathcal{E}(u) - pI\)
- \(\text{div} \, \sigma = \text{div}(2\mu \mathcal{E}(u) + pI) = 0\)
- \(\text{div} \, u = 0 \rightarrow \nabla \cdot u = 0\)
- We'll study a simplified problem: -div (σ(u) - pI) + f = g
- Strong form:
- \(-\Delta u + \nabla p = f \quad \text{in } \Omega \)
- \(\text{div} \, u = 0 \quad \text{in } \Omega\)
- \(u = 0 \quad \text{on } \partial \Omega\)
- Strong form:
- Weak Formulation
- \(\int_{\Omega} \nabla u : \nabla v - p \text{div} \, v + f v \, dx = 0 \quad \forall v \in H^1_0(\Omega)\)
- \(\int_{\Omega} \text{div} \, q \, dx = 0 \quad \forall q \in L^2(\Omega)\)
- Introducing notation: \(V = H^1_0(\Omega, \mathbb{R}^d), \, Q = L^2_0(\Omega)\)
2: ∀v x Vα → ℝ; u,v → a(u,v) = ∫Ω ∇u : ∇v dx
b: V x Q → ℝ ; u,p → b(u,p) = - ∫Ω div u p dx
Can rewrite the problem as: find (u,p) ∈ V x Q such that
- a(u,v) + b(v,p) = F(u) ∀v ∈ V
- + b(v,q) = 0 ∀q ∈ Q
F: x ∈ V → F(x) = ∫Ω f x dx
|F(x)| ≤ ∫Ω |f x| dx ≤ ||f||L2(Ω) ||x||L2(Ω) ≤ ||f||L2(Ω) ||x||V, ∀x ∈ V
|F(x)| is bounded, so it is a continuous functional
a(u,v) := ∫Ω ∇u : ∇v dx
Continuity: |a(u,v)| ≤ ||u||V ||v||V
Coercivity: a(u,v) ≥ α ||u||2, α>0
b(u,q) := -∫Ω div u q dx
|b(u,q)| = |∫Ω div u q dx| ≤ ∫Ω |div u q| dx ≤ ||div u||L2(Ω) ||q||L2(Ω)
∫Ω |∂uk/∂x + ∂ux/∂y| dx = ∫Ω | ∂uk/∂x | + | ∂uy/∂y | + 2 ∂ux ∂uy / x q dy
≤ || ∂ux
|| div u ||2L2(Ω) ≤ ||u||2L2(Ω)
|b(u,q)| ≤ 2 ||div u|| ||q|| bounded
b(u,q) is continuous
Stability
- u=x, p=q
- a(u,q) + b(u,p) = F(u)
- b(u,p)=0
⇒ a(u,q) = F(u)
α ||u||2 ≤ a(u,q) = F(u) ≤ ||f||L2 ||u||L2(Ω)
⇒ ||u||/√α ≤ ||f||L2(Ω) ⇒ y bounded
Stability of P?
INF – SUP condition
Property:
sup b(x,q) / ||x||V ≥ β ||q||L ∀q ∈ Q