Anteprima
Vedrai una selezione di 2 pagine su 6
Navier Sokes Problems Pag. 1 Navier Sokes Problems Pag. 2
1 su 6
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

NUMERICAL METHODS FOR DIFFERENTIAL EQNS

NAVIER - STOKES

t (u(y) v) + ∇ · (u(y) v ⊗ v) + ∇p - ∇ · ϵ(v) + F = 0

  • go to WEAK form, performing integrals piecewise

∫∫ Ω ∇· (u(y) v) q = 0

∫∫ Ω ϵ(v) : ∇ q = ∫∫ ∂Ω φ q = 0; this is already used to ensure div(u) = 0

(u(y) v · ∇) v = nonlinear term remains as it was

  • Non-linear term Ω (u · ∇v) vT is called a trilinear form
  1. Usually we add a condition to Q : Q = L2(α) s.t. ∫ Q = 0
  2. Algebraic counterpart of 1st eqn no time derivative
  3. Iterative schemes for c(vn, vn, vn) = F(v)∀ v ∈ Hp
  • Idea is to use at differential level a scheme like: initial guess for velocity u0; having discarded time it's only an iteration for nonlinearity
  • Convergence strongly depends on choice of initial guess

[ A + C(v)][U] = [F] [ B ][ P ]

  • Convergence strongly depends on properties of the flow

Recall of Newton method

E(X) = 0 → fi(x1, ..., xn) = 0

x(0)

to line to F = 0, in intersection with x-axis

f' (x(0)) (x - x(0)) + f (x(0)) = 0

f' (x(0)) (x(1) - x(0)) + f (x(0)) = 0

f' (x(0)) (x(1)) + f (x(0)) = 0

to be generalized to our case

DF (x(i))

(x(i+1) = x(i) + δx)

DF (x(i)) = [∂fi/∂xj … ∂fi/∂xn](i)

J (x(i))

we'll have to invert Jacobian matrix

J (x(i)) δx = -F (x(i))

δx is the solution of the linear system

Stopping Criteria

  • Residue: |P (x(M))| must be as close as possible to zero
  • f (x(M)) = x(M), choose a-priori tolerance ε

If |P (x(M))|2 l2 ε , stop

F (x(M)) = x(M)

Increments (difference between 2 successive iterates: small enough)

In most cases both criterias are checked, to impose stronger requirements

In practical cases for our problems, residue is the most commonly used

What is DF (x) = J (x) in our case?

Consider a generic non-linear operator N (u)

DN (u+)

active d.o.f., it could be (ℓ(M+1-M))

h direction

DN (u+) h = limε→0 N (u+ + εB) - N (u+) / ε

(definition of directional derivative)

N (u ) is LINEAR: DN (u+) h = limε→0 N (u+) -εEN (B) - N (u+)/ ε = N (B)1

N (u+) = 0

(DN (u+) hb = N (B)b = ∂h)

N (u+) is NONLINEAR ( (u : ∇u) u )

DN (u+) h =

limε→0 ((u+ + εB) . ∇ (u+ + εB) . (u+ + εB) - (u+ . ∇u+ ) u+) / ε

limε→0 (u+h) . ∇(u+ε) ub b + ε (Eb )b (u) + (u+h) . ∇ (D) u+

DN (u+) h2 = (∇ (u+) hb) h . (∇ (D) u+) h U+

-∇ E (u(n+1))

( u(n) . ∇) u(n) + (u(n+1) . ∇) u(n+1)) g U+ + ∇p ( u(n+1)) = f ( u(n) ), V(f)

∇ . U(n+1) = 0

Newton methods for steady Navier-Stokes equations

Dettagli
Publisher
A.A. 2017-2018
6 pagine
SSD Scienze matematiche e informatiche MAT/08 Analisi numerica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher gm_95 di informazioni apprese con la frequenza delle lezioni di Numerical Modeling of Differential Problem e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Miglio Edie.