vuoi
o PayPal
tutte le volte che vuoi
G G
1 G1 2 G2
0 0
0 1
−y −25 −y
· −48.81 · −25
25
s : ρ = = cm s : ρ = = cm
G G
3 G3 4 G4
1 0
1 0
−25 − −
· −25 · −18.81
30 y 25 30 y
s : ρ = = cm s : ρ = = cm
G G
5 G5 6 G6
0 1
0
− ·
25 80 y
s : ρ = = 31.19 cm
G
7 G7 1 s
s
cos θ 8
8
− · −
R cos θ R sin θ + 80 y
s : ρ = = R + (80 y ) sin = 25 + 31.19 sin cm
G
8 G8 G
sin θ R 25
Theory of Structures 7
2. Problem T2
In order to compute the center of shear we must define the Jourawsky stress flux as:
T
T y
x ∗ ∗
∗ −
− S (s) S (s)
q (s) = y x
I I
y x
∗
Since we already know x we need only to define S (s).
C y
∗
S (s ) = 25 b s = 100 s
1 2 1 1
y
∗ ∗
S (s ) = S (s = 50) + 25 b s = 5000 + 100 s
2 1 2 2 2
y y s
3
∗ ∗ 23
−
− b s = 8000 + 100 s 2 s
S (s ) = S (s = 30) + 25 4 3 3
3 2
y y 2
∗ ∗ − −
S (s ) = S (s = 50) 25 b s = 8000 100 s
4 3 3 4 4
y y
∗ ∗ − −
S (s ) = S (s = 30) 25 b s = 5000 100 s
5 4 3 5 5
y y s
6
∗ ∗ 26
− −
S (s ) = S (s = 50) + 25 b s = 5000 + 150 s 3 s
6 1 5 6 6
y y 2
s
7
∗ 27
− −
S (s ) = 25 b s = 100 s 2 s
7 6 7 7
y 2
R+r θ R+r s
Z Z Z Z s ds
∗ 2 2
S (s ) = ρ cos θ dρ dθ = ρ cos dρ =
8
y R R
R−r 0 R−r 0
s b s s
1 h i 8 1 8 8
3 3 2 2
− − ≃
(R + r) (R r) sin = b + 12 R sin 2505.33 sin
= 1
3 R 12 R 25
In order to obtain the coordinate y of the center of shear we must satisfy the following system of
C
equations: ∗
H
−
T y + 2 q Ω + 2 q Ω + 2 q Ω = q (s) ρ ds
x C 1 1 2 2 3 3 G
1+2+3
∗
q
ds ds
H H
R
− −
q q = ds
1 2
b b b
1 1
l
12
∗
q
ds ds ds H
H R R
− − −
q q q = ds
2 1 3
b b b b
2
2 l l
12 23
∗
q
ds
ds R H
H − −
q = ds
q
3 2
b b b
3 l 3
23
Let us compute the constant terms:
50 30 50
Z
I Z Z
T
x
∗ ∗ ∗ ∗
−
q (s) ρ ds = S (s ) ρ ds + S (s ) ρ ds + S (s ) ρ ds +
G 1 G1 1 2 G2 2 3 G3 3
y y y
I
y
1+2+3 0 0 0 #
30 50 50 50 πR
Z Z Z Z Z
∗ ∗ ∗ ∗ ∗
+ S (s ) ρ ds + S (s ) ρ ds + S (s ) ρ ds + S (s ) ρ ds + S (s ) ρ ds =
4 G4 4 5 G5 5 6 G6 6 7 G7 7 8 G8 8
y y y y y
0 0 0 0 0
50 30 50
Z Z Z
T
x 23
− −25 − − −
= (100 s ) ds 25 (5000 + 100 s ) ds 48.81 8000 + 100 s 2 s ds +
1 1 2 2 3 3
I
y 0 0 0
30 50 50
Z Z Z 26
−25 − − − − −
(8000 100 s ) ds 25 (5000 100 s ) ds 18.81 5000 + 150 s 3 s ds +
4 4 5 5 6 6
0 0 0 #
50 πR
Z Z s
s
8
8
27
− 25 + 31.19 sin ds =
+31.19 100 s 2 s ds + 2505.33 sin
7 7 8
25 25
0 0
T 35938126.62
x
− (−35938126.62) = T = 55.6771 T N cm
x x
I 645474.18
y
Theory of Structures 8
2. Problem T2 50 30 50 30
∗ Z
I Z Z Z
T ds ds ds ds
q x 6 4 3
∗ ∗ ∗ ∗
− − − −
S
ds = (s ) S (s ) S (s ) S (s ) =
6 4 3 2
y y y y
b I b b b b
y 5 3 4 2
0 0 0 0
1 50 30 50
Z Z Z
T ds ds ds
x 6 4 3
26 23
− − − − − −
= 5000 + 150 s 3 s (8000 100 s ) 8000 + 100 s 2 s +
6 4 3
I 6 4 4
y 0 0 0
30
Z ds T 155833.33
x
− − ≃
(5000 + 100 s ) = (−155833.33) = T 0.2414 T N/cm
2 x x
4 I 645474.18
y
0 50 50 50 50
∗ Z
I Z Z Z
ds
T
q ds ds ds
7
x 5 6 1
∗ ∗ ∗ ∗
− − − −
S (s )
ds = S S S =
(s ) (s ) (s )
7 5 6 1
y y y y
b I b b b b
y 6 3 5 2
0 0 0 0
2 50 50 50
Z Z Z
T ds ds ds
x 7 5 6
27 26
− − − − − −
= 100 s 2 s (5000 100 s ) 5000 + 150 s 3 s +
7 5 6
I 4 b 6
y 3
0 0 0
50
Z T 104166.67
ds x
1 − ≃
− = (−104166.67) = T 0.1614 T N/cm
(100 s ) x x
1 4 I 645474.18
y
0 25π 50
∗ Z
I Z
T
q ds ds
x 8 7
∗ ∗
− −
ds = S S
(s ) (s ) =
8 7
y y
b I b b
y 1 6
0 0
3 50
25π
Z
Z
ds ds
T s T
8 7
x 8 x
27
− −
− −
100 s 2 s
= 2505.33 sin = (20900.00) =
7
I 25 4 4 I
y y
0
0
20900.00 −0.0324
− = T N/cm
= x
645474.18
Computation of the coefficients: 2
·
π 25
2 2 2
· · · · ·
2 Ω = 2 30 50 = 3000 cm 2 Ω = 2 50 50 = 5000 cm 2 Ω = 2 = 1963.50 cm
1 2 3 2
I
I 50 30 50 30 ds 50 50 50 50
ds = + + + = 35.83 = + + + = 45.83
b 6 4 4 4 b 4 4 6 4
2
1
I Z Z
ds 25π 50 ds 50 ds 50
= + = 32.13 = = 8.33 = = 12.5
b 4 4 b 6 b 4
3 l l
12 23
Now we solve the linear system:
−55.6771
3000 5000 1963.50 T q
x 1
−8.33 −0.2414
35.83 0 0 q 2
= T
x
−8.33 −12.5 −0.1614
45.83 0 q 3
−12.5
0 32.13 0 y 0.0324
C
We obtain: ′
−3.52 −→
y = cm y = y + y = 45.29 cm
C G C
C
′
Where y is the position of the shear center with respect to the horizontal axis passing through lamina
C
4. Once we have the shear center coordinates we can compute ρ :
C
−1 −1
− −
· −25 · −25
25 80 (y + y ) 25 30 (y + y )
s : ρ = = cm s : ρ = = cm
G C G C
1 C1 2 C2
0 0
0 1
−(y −25 −(y
· −45.29 · −25
25 + y ) + y )
s : ρ = = cm s : ρ = = cm
G C G C
3 C3 4 C4
1 0
1 0
−25 − −
· −25 · −15.29
30 (y + y ) 25 30 (y + y )
s : ρ = = cm s : ρ = = cm
G C G C
5 C5 6 C6
0 1
Theory of Structures 9
2. Problem T2
0
− ·
25 80 (y + y )
s : ρ = = 34.71 cm
G C
7 C7 1 s s
cos θ 8 8
− · −
R cos θ R sin θ + 80 (y + y )
s : ρ = = R + (80 (y + y )) sin = 25 + 34.71 sin cm
G C
8 C8 G C
sin θ R 25
∗ 3
Figure 2.2: The distribution S (s) [cm ], the position of the centroid and the center of shear, the
y
convention adopted for computing the closed loop integrals
Now we compute the effective stress field by the system:
M = 2 Ω q + 2 Ω q + 2 Ω q
t 1 1 2 2 3 3
ds ds
H R
− −
q q 2 Ω G β = 0
1 2 1
b b
l
1
12
ds ds
ds R R
H − − −
q q 2 Ω G β = 0
q 1 2 2
2
b b b
l l
2 12 23
ds
ds
H R
− −
q q 2 Ω G β = 0
3 2 3
b b
3 l
23
The shear modulus is: 6
·
E 3.5 10 6 2
·
G = = = 1.4583 10 N/cm
2 (1 + ν) 2 (1 + 0.2)
6
·
And the torque is equal to 9 10 N cm. The new terms are:
11 11 11
· · ·
2 Ω G = 4.3750 10 N 2 Ω G = 7.2917 10 N 2 Ω G = 2.8634 10 N
1 2 3
In the end we have: 6
·
3000 5000 1963.50 0 q 9 10
1
11
−8.33 −4.3750 ·
35.83 0 10 q 0
2
=
11
−8.33 −12.5 −7.2917 ·
45.83 10 q 0
3
11
−12.5 −2.8634 ·
0 32.13 10 β 0
The results are: −6 −1
·
q = 763.47 N/cm q = 1034.07 N/cm q = 783.92 N/cm β = 4.2835 10 cm
1 2 3
Once the flux is known we can compute the stress field in the section:
q
2 2
−258.5184 −2.59
− = N/cm = M P a
s : τ =
1 zs b
2
q
1 2
− −190.8666 −1.91
s : τ = = N/cm = M P a
2 zs b
2
q
1 2
− −190.8666 −1.91
s : τ = = N/cm = M P a
3 zs b
4
Theory of Structures 10
2. Problem T2 q 1 2
− −190.8666 −1.91
s : τ = = N/cm = M P a
4 zs b 3
q 2 2
− −258.5184 −2.59
s : τ = = N/cm = M P a
5 zs b 3
−
q q
1 2 2
−45.1012 −0.45
= N/cm = M P a
s : τ =
6 zs b 5
−
q q
2 3 2
= 62.5372 N/cm = 0.63 M P a
s : τ =
7 zs b 6
q 3 2
s : τ = = 195.9812 N/cm = 1.96 M P a
8 zs b 1
Once we have the stress field in the section we can compute the warping function with the formula:
a
Z τ zs − ρ ds + Ψ
Ψ (x, y) = C 0
C Gβ
0
The value of the constant Ψ is determined by imposing the normalization condition:
0 Z Ψ dA = 0
C
A
We can avoid this computation by simply observing that we have a symmetric section and, since the
warping function in antisymmetric, we can claim that the function is null when it crosses the vertical
- Risolvere un problema di matematica
- Riassumere un testo
- Tradurre una frase
- E molto altro ancora...
Per termini, condizioni e privacy, visita la relativa pagina.