Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
PIERLUIGI GIANGRANDE
PIERLUIGI GIANGRANDE
2 PIERLUIGI GIANGRANDE
Indice
1 Introduzione 7
1.1 Concetti di base . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.1 Portata . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2 Concentrazione . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Carico . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Contaminazione delle acque 9
2.1 Solidi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Classificazione dei solidi . . . . . . . . . . . . . . . . . 9
2.1.2 Metodi di misurazione della concentrazione dei solidi . 10
2.1.3 e . . . . . . . . . . . . . . . . . . . . . . . 11
BOD COD
5
2.1.3.1 . . . . . . . . . . . . . . . . . . . . . . 11
BOD
5
2.1.3.2 . . . . . . . . . . . . . . . . . . . . . . 12
COD
Titolazione . . . . . . . . . . . . . . . . . . . . 12
Metodo per la misurazione del COD . . . . . . 12
2.1.4 Solidi colloidali . . . . . . . . . . . . . . . . . . . . . . 13
3 Grandezze che descrivono le proprietà di un’acqua 15
3.1 pH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Durezza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Alcalinità . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Ricostruzione del diagramma a barre dell’acqua . . . . . . . . 16
3.5 Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5.1 Ossigeno . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5.2 Anidride Carbonica . . . . . . . . . . . . . . . . . . . . 17
3.5.2.1 Diagramma dell’equilibrio bicarbonico o di
Kilman . . . . . . . . . . . . . . . . . . . . . 18
3.6 Solidi organici biodegradabili . . . . . . . . . . . . . . . . . . 18
3
PIERLUIGI GIANGRANDE
4 INDICE
4 Trattamento delle acque 19
5 Linea delle acque 21
5.1 Processo di disinfezione . . . . . . . . . . . . . . . . . . . . . 21
5.1.1 Processi per la disinfezione di basse quantità d’acqua . 21
5.1.2 Processi per la disinfezione di grandi quantità d’acqua 22
5.1.2.1 Raggi UV . . . . . . . . . . . . . . . . . . . . 22
Vantaggi e svantaggi . . . . . . . . . . . . . . . 22
5.1.2.2 Ozonizzazione . . . . . . . . . . . . . . . . . 23
Vantaggi e svantaggi . . . . . . . . . . . . . . . 23
5.1.2.3 Clorazione . . . . . . . . . . . . . . . . . . . 23
Vantaggi e svantaggi . . . . . . . . . . . . . . . 24
Diagramma della clorazione . . . . . . . . . . . 24
5.2 Processi di sedimentazione . . . . . . . . . . . . . . . . . . . . 25
5.2.1 Sedimentazione in acqua ferma . . . . . . . . . . . . . 26
5.2.2 Sedimentazione negli impianti di trattamento . . . . . 26
5.2.2.1 Sedimentazione di tipo I . . . . . . . . . . . . 26
Vasche a flusso ascensionale . . . . . . . . . . . 26
Vasche a flusso longitudinale . . . . . . . . . . . 27
Vasche a flusso radiale . . . . . . . . . . . . . . 28
5.2.2.2 Sedimentazione di tipo II . . . . . . . . . . . 28
5.2.2.3 Sedimentazione di tipo III . . . . . . . . . . . 28
5.3 Processi di coagulazione e flocculazione . . . . . . . . . . . . . 29
5.3.1 Coagulazione . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.2 Flocculazione . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.3 Sedimentazione . . . . . . . . . . . . . . . . . . . . . . 31
5.3.4 Dosaggio reattivi . . . . . . . . . . . . . . . . . . . . . 31
5.3.5 Parametri geometrici . . . . . . . . . . . . . . . . . . . 32
5.3.6 Bacini unici . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Processi di precipitazione . . . . . . . . . . . . . . . . . . . . 32
5.4.1 Addolcimento . . . . . . . . . . . . . . . . . . . . . . . 33
5.4.2 Processi di Ossidazione chimica . . . . . . . . . . . . . 34
5.5 Processi di neutralizzazione . . . . . . . . . . . . . . . . . . . 35
5.5.1 Acqua aggressiva . . . . . . . . . . . . . . . . . . . . . 35
5.5.2 Acqua incrostante . . . . . . . . . . . . . . . . . . . . 37
5.6 Processi di natura biologica . . . . . . . . . . . . . . . . . . . 37
5.6.1 Processi di ossidazione biologica . . . . . . . . . . . . . 37
5.6.1.1 Processi a colture sospese . . . . . . . . . . . 37
Elementi di cinetica biologica . . . . . . . . . . 38
Impianto a fanghi attivi . . . . . . . . . . . . . 40
PIERLUIGI GIANGRANDE
5
INDICE Tipologie di vasche . . . . . . . . . . . . . 44
Legge di Monod . . . . . . . . . . . . . . . 44
Metodi di fornitura d’ossigeno . . . . . . . . . . 44
Malattia di Bulking . . . . . . . . . . . . . . . . 45
5.6.1.2 Processi a colture adese . . . . . . . . . . . . 45
Letti Percolatori . . . . . . . . . . . . . . . . . 45
Progetto . . . . . . . . . . . . . . . . . . . 45
Biodischi . . . . . . . . . . . . . . . . . . . . . . 46
PIERLUIGI GIANGRANDE
6 INDICE
PIERLUIGI GIANGRANDE
Capitolo 1
Introduzione
L’ingegneria sanitaria è la disciplina che si occupa del trattamento delle acque
per modificarne le caratteristiche di qualità al fine di renderle idonee ad un
determinato utilizzo. Andiamo ad esaminare alcuni esempi di applicazioni
di questa disciplina:
• un impianto può essere utilizzato per modificare le caratteristiche di
un’acqua destinata ad uno specifico scopo; ad esempio si può realizzare
un impianto per rendere l’acqua potabile, per renderla adeguata alla
pulizia dei circuiti, per la fabbricazione di un farmaco, ecc.; in alcuni
casi le caratteristiche che deve possedere l’acqua trattata vengono defi-
nite da normative (e quindi clui che progetta l’impianto deve adeguarsi
alle normative per legge, come nel primo esempio trattato), in altri in-
vece esse non sono definite da normative ma vengono rispettate per
gli interessi di chi ne usufruisce (come nel secondo e nel terzo esempio
trattato);
• un impianto può essere utilizzato per modificare le caratteristiche di
un’acqua che deve essere riversata nell’ambiente (detto corpo ricet-
tale impianto viene detto In tal
tore); impianto di depurazione.
caso le caratteristiche dell’acqua vengono dettate da norme, come ad
esempio la 152/06.
Altri aspetti che vengono trattati da questa disciplina (ma che non saranno
oggetto del corso) sono:
• smaltimento rifiuti;
• emissioni in atmosfera;
• bonifica dei siti contaminati. 7
PIERLUIGI GIANGRANDE
8 CAPITOLO 1. INTRODUZIONE
1.1 Concetti di base
Andiamo ora a trattare i concetti di base per lo studio della materia.
1.1.1 Portata
La è la quantità di materia che attraversa una sezione di area A
portata
nell’unità di tempo; essa si misura in o 3
kg/s m /s.
1.1.2 Concentrazione
Si definisce il rapporto tra la quantità di una sostanza in
concentrazione
soluzione e il volume totale della soluzione. La quantità può essere espressa
in • peso (l’unità di misura è )
3
kg/m
• volume (in tal caso la concentrazione è adimensionale o è espressa come
ml/l)
• numero di moli (in tal caso la concentrazione è detta o
molarità
concentrazione molare)
Un altro modo per esprimere la concentrazione di una soluzione è la nor-
ossia il rapporto tra gli e il volume di una soluzione.
1
malità, equivalenti
1.1.3 Carico
Si definisce il prodotto tra la concentrazione e la portata. Questo
carico
concetto è stato introdotto in quanto l’inquinamento di una sostanza in un
sistema dipende non solo dalla concentrazione della sostanza, ma anche dalla
portata, ossia dalla velocità di introduzione della sostanza.
peso sostanza
1 numero equivalente)
Gli equivalenti (o sono pari a , dove il peso
peso equivalente
peso atomico valenza
; la è pari al numero di ioni idrogeno che possono
equivalente è |valenza|
essere ceduti o acquistati da un composto e può essere facilmente calcolata andando a
scindere il composto in ioni. PIERLUIGI GIANGRANDE
Capitolo 2
Contaminazione delle acque
Si è soliti associare alla qualità di un acqua la quantità di solidi e gas presenti
in essa. Andiamo ora a studiare l’effetto della presenza di tali sostanze
nell’acqua.
2.1 Solidi
2.1.1 Classificazione dei solidi
Uno dei parametri studiati per definire la qualità di un’acqua è la concen-
trazione di (ST), misurata in , (parti per
3
mg/l, g/m ppm
solidi totali
milione). I solidi totali si suddividono in
• con dimensioni inferiori ai e non distinguibili a
−6
10 mm
disciolti,
occhio nudo
• con dimensioni comprese tra i e i e che
−6 −3
10 10 mm
colloidali,
alterano la colorazione dell’acqua
• con dimensioni superiori ai e distinguibili a occhio
−3
10 mm
sospesi,
nudo
Un’altra classificazione che può essere fatta per i solidi è la seguente
• solidi che volatilizzano ad alte temperature e
volatili o organici,
possono essere biodegradati (smaltiti da microorganismi)
• solidi che non volatilizzano ad alte tem-
non volatili o inorganici,
perature e non possono essere biodegradati
E’ possibile fare inoltre un’altra classificazione per i soli solidi sospesi
9
PIERLUIGI GIANGRANDE
10 CAPITOLO 2. CONTAMINAZIONE DELLE ACQUE
• solidi abbastanza grandi da separarsi dall’acqua per
sedimentabili,
effetto di gravità nel giro di 2 ore (precipitano sul fondo del bicchiere)
• solidi che non precipitano sul fondo del bicchiere
non sedimentabili,
Per questo si parla di STV (solidi totali volatili), SSV (solidi sospesi volatili),
ecc. E’ importante dire che , ,
SS = SSV + SSN V SD = SDV + SDN V
; la terza relazione la si ottiene dalle prime due per
ST = ST V + ST N V
somma.
2.1.2 Metodi di misurazione della concentrazione dei solidi
Per la misurazione della concentrazione dei solidi viene solitamente utilizzato
un recipiente di peso che, una volta inseriti in esso , presenta
P H O + ST
0 2
un peso lordo pari a . Messo il recipiente in un forno e raggiunta una tem-
P 1
peratura di circa l’acqua evapora e il recipiente pesa , contenendo
105°C P
2
−P
solo ST; allora , dove è il volume del recipiente.
P
ST = V
2 0
V
Andando poi ad inserire il recipiente in una muffola e portandolo ad una
temperatura di circa si ha che i solidi volatili bruciano, per cui il peso
450° −P −P
del recipiente diventa ; si avrà quindi , .
P P
P ST N V = ST V =
3 0 3 2
3 V V
Un metodo per distinguere i solidi disciolti da quelli sospesi è quello di
utilizzare un il quale, al passaggio di , lascia
H O + ST
filtro di cellulosa 2
passar