Anteprima
Vedrai una selezione di 5 pagine su 16
Formulario analisi 1 Pag. 1 Formulario analisi 1 Pag. 2
Anteprima di 5 pagg. su 16.
Scarica il documento per vederlo tutto.
Formulario analisi 1 Pag. 6
Anteprima di 5 pagg. su 16.
Scarica il documento per vederlo tutto.
Formulario analisi 1 Pag. 11
Anteprima di 5 pagg. su 16.
Scarica il documento per vederlo tutto.
Formulario analisi 1 Pag. 16
1 su 16
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

Numeri Complessi:

= +

  • = || = √2 + 2 → modulo
  • = arctg / se > 0
  • = π + arctg / se < 0
  • = π/2 se = 0, > 0
  • = -π/2 se = 0, < 0

argomento

cos = /|| e sin = /||

  • Re = cos → reale
  • Im = sin → immaginario

= -

= [cos() + i sin()]

̅ → coniugato

* ̅ = ||2 = Re()2 + ()2

+ = [ + ] + [ + ] = ( + ) + ( + ) → somma

- = [ + ] - [ + ] = ( - ) + ( - )

· = [( - ) + ( + )] → prodotto

: = (2/1) [cos(1 - 2) + i sin(1 - 2)] → quoziente

= [ cos() + i sin() ] → potenza

√ = √ [ cos ( + 2kπ/u) + i sin ( + 2kπ/u) ]

zE = z1 - √2 [cos /2 + i sin /2]

z2 - z3 = - √2 [ cos ( + π)/2 + i sin ( + π)/2 ]

N.B. cos =

Re(z†) | Im(z†)

  • 0 0 0
  • → → →
  • < 0 < 0 < 0

◦ LIMITI ◦

lim [x→∞] f(x) ∑ f(x) = L = ∞

oppure lim [x→x0] di x = ∞ ±

lim f(x) g(x) = lim f(x) X lim g(x)

lim f(x)/g(x) = lim f(x) / lim g(x)

lim f(x)g(x) = (lim g(x) lim f(x)

lim g(x)/f(x) = limg(x) X lim f(x)

N.B. ±∞ ∙ ±∞ = ±∞

ex = x + x2 + x4 + σ(x4)

ln(1+x) = x - x2/2 + σ(x2)

(1+x)u = 1 + ux + u(u-1)/2x2 + u(u-1)(u-2)/6x3 + σ(x3)

sin x = x - x3/6 + x5/120 + σ(x7)

cos x = 1 - x2/2 + x4/24 + σ(x6)

tg x = x + x3/3 + 2x5/15 + 17x7/315 + 62x9/2835 + σ(x11)

arcsin x = x + x3/6 + 3x5/40 + σ(x7)

arccos x = x - x2/2 + (x4)/24 + σ(x6)

arctg x = x - x3/3 + 3x5/5 - 17x7/7 + σ(x9)

1/1-x = 1*x4 + σ(x5)

1/1+x2 = (-1)4x24 + σ(x24)

STUDIO DI FUNZIONE

  • razionale intere D = ℝ
  • fratte D = ℝ\{x≠0}
  • irrazionali pari D = sotto √⟹ >0
  • dispari D = dominio sotto √
  • esponenziali D = dominio esponente
  • logaritmiche D = ℝ\{x|x > 0}
  • trigonometriche sin D = ℝ\x\{-1,0,1}
  • cos D = ℝ\x\{-1,0,1}
  • tan D = ℝ\x{\frac{π}{2} + 2πk} (D = ℝ\x)

lim x→0 arcosx = π/2

lim x→0+ arcosx = 0

lim x→+∞ arctgx = +π/2

lim x→0 arctgx = 0

lim x→±1 arctgx = ± π/4

se x → 0 arctgx ~ x

Bilanciato

  • ln(1+x) ~ x
  • tgx ~ x
  • ex - 1 ~ x
  • 1 - cosx ~ x2/2
  • arcsinx ~ x
  • arctgx ~ x
  • ax - 1 ~ x ln(a)
  • (1+x)n - 1 ~ nx

Sulle successioni

  • Criterio rapporto
    • lim n→∞ an+1/an = L
    • se 0
Dettagli
Publisher
A.A. 2019-2020
16 pagine
SSD Scienze matematiche e informatiche MAT/05 Analisi matematica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Chicco_97 di informazioni apprese con la frequenza delle lezioni di Analisi matematica 1 e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Mola Gianluca.