Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
SIGNAL → mathematical model of phenomena
DIGITALIZING → translate a physical quantity into numbers.
SIGNAL → FUNCTION → NUMBERS
FILTER DESIGN → remove all we don't want from the signal
SYSTEM → mathematical formal model that transforms the signal in input (ex: filter)
ex: transform from the time domain into frequency domain (Fourier transform)
SCHEMA: blocchi in successione
SENSORS: transform a non-electrical quantity into an electr. quantity (ex: temperature)
The signal can be analog or digital (just converted by the sensor)
INPUT
SIGNAL CONDITIONING: adapt the signal → ex: improve
AND INTERFACING clean up the signal: amplification, ADC ...
DSP:
- digital control
- digital filtering
- transform
- parameter estimation (ex. estimation of position in a drone)
- feature extraction
- optimization
OUTPUT SIGNAL CONDITIONING & INTERFACING:
- D/A Conversion
- PWM modulation
- Amplification
DIGITAL ADVANTAGE:
- flexibility
- robustness
- predictability
- performance
- development time
- Known (numerical) precision
R1 & R2 are affected by tolerance
R1 & R2 change with temperature & age
gain Go is G ± ΔG
There's an offset in operational amplifier
y = (1 +
R2
------------ x
R1
SEQUENCES
The distance of the pulse depending on sampling time adimensional index
-
X(m) = δ(m) = { 1 m = 0 { 0 m ≠ 0
Kronecker delta
δ(t) is a distribution (∫−∞∞δ(t)dt = 1 di solito) δK(t) è diversa da δ(m)
-
Unit Step: X(m) = U(m) = { 1 m > 0 { 0 m < 0
-
Exponential Sequence: X(m) = AαmU(m) =
- if 0 < α < 1 → va a zero
- if -1 < α < 0 → si alterna e va a zero
- if α > 1 → diverge
- if α < -1 → diverge alternando
for n > Mo.
Al esempio se ci dobbiamo analizzare dati sobati prima si puo' usare un sistema causale un moto non causale
The moving average is causal system.
ym = (1 / (2N+1)) N∑K=-N x(m-K)
scritto con consider onde i campioni futuri
faccio la media rispetto al centro
ON-LINE (real time) PROCESSING
- processing the data as soon as they come.
- we want ready result.
- Computational speed must be high per restare nei tempi predefiniti → deadline
- es: ABS delle auto
OFF-LINE (batch) PROCESSING
- processing the data from a huge pack of data. The processing time is relativity important.
IH: an LTI system is BIBO stable
∑ |h(m)| < +∞
converge
PROOF:
|y(m)| = |∑k=-∞∞ x(m) h(m-K)| ≤ ∑k=-∞∞ |x(m)| |h(m-K)|
triangular inequality
∀ x(m) ∃ B |x(m)| ≤ B → |y(m)| ≤ B'
B ∑M=-∞∞ |h(m-K)| < +∞
stable system
PROPERTIES OF CONV. SUM
y(m) = ∑k=-∞∞ x(k) h(m-K)
in ideal form it can be used approssimally
- if h(m) = 0 M < 0
- if |x(m)| x(m) = 0 M < 0
y(m) = ∑k=0M x(K) h(m-K)
campa del tempo e spostata verso sinistra
CONSTANT-COEFFICIENT LINEAR DIFFERENCE EQUATIONS (CLDE)
x(m) → [T] → y(m)
∑k=0Naky(m-k) = ∑k=0Mbkx(m-k)
- CONSTANT
linear combination of inputs and outputs values
→ y(m) = ∑k=0M bk/a0 x(m-k) - ∑k=1N ak / a0 y(m-k)
IF x(m)=0 M