francesco.speciale
Ominide
1 min. di lettura
Vota

Determina le diagonali di un rombo di cui conosci perimetro e area.


rombo.jpg

Svolgimento
Il perimetro del rombo è dato dalla somma dei quattro lati uguali, cioè

[math]2p=4l[/math]

, dove

[math]l=\sqrt{((d_1)/2)^2+((d_2)/2)^2}[/math]

.
Pertanto

[math]2p=4l=4\sqrt{((d_1)/2)^2+((d_2)/2)^2}[/math]

L'area del rombo è:

[math]A=((d_1) \cdot (d_2))/2[/math]

.
Mettendo a sistema le due equazioni e risolvendolo per sostituzione
troveremo le misure delle due diagonali

[math]\begin{cases} 2p=4\sqrt{((d_1)/2)^2+((d_2)/2)^2} \\ A=((d_1) \cdot (d_2))/2 \ \end{cases}[/math]

;

[math]\begin{cases} 2p=4\sqrt{((d_1)/2)^2+((d_2)/2)^2} \\ d_1=(2A)/(d_2) \ \end{cases}[/math]

;

[math]\begin{cases} 2p=4\sqrt{(((2A)/(d_2))/2)^2+((d_2)/2)^2} \\ d_1=(2A)/(d_2) \ \end{cases}[/math]

;

[math]\begin{cases} 2p=4\sqrt{(A/(d_2))^2+((d_2)/2)^2} \\ d_1=(2A)/(d_2) \ \end{cases}[/math]

.
Procedendo per sostituzione otteniamo le misure delle due diagonali.

Domande e risposte

Hai bisogno di aiuto?
Chiedi alla community