francesco.speciale
Ominide
1 min. di lettura
Vota

Determina le diagonali di un rombo sapendo che la loro differenza è

[math]d[/math]

e che l'area del rombo è

[math]s^2[/math]

.


rombo.jpg

Svolgimento
Poniamo

[math]d_1=x[/math]

e

[math]d_2=y[/math]

, i dati fornitici dal problema sono:

[math]y-x=d ^^ A=(xy)/2=s^2[/math]

.
Mettendo a sistema le due equazioni e risolvendolo per sostituzione
troveremo le misure delle due diagonali

[math]\begin{cases} y-x=d \\ (xy)/2=s^2 \ \end{cases}[/math]

;

[math]\begin{cases} y=d+x \\ (xy)/2=s^2 \ \end{cases}[/math]

;

[math]\begin{cases} y=d+x \\ (x(d+x))/2=s^2 \ \end{cases}[/math]

;

[math]\begin{cases} y=d+x \\ xd+x^2-2s^2=0 \ \end{cases}[/math]

;
Risolviamo la seguente equazione di secondo grado:

[math]x^2+xd-2s^2=0[/math]

[math]Delta=b^2-4ac=(d)^2-(4 \cdot 1 \cdot (-2s^2)=d^2+8s^2[/math]

[math]x_(1,2)=(-b+-\sqrt{Delta})/(2a)=(-d+-\sqrt(d^2+8s^2))/2 => x_1=(-d+\sqrt(d^2+8s^2))/2 ^^ x_2=(-d-\sqrt(d^2+8s^2))/2[/math]

.
La soluzione

[math]x_2=(-d-\sqrt{d^2+8s^2})/2[/math]

non è accettabile, perchè negativa.
Pertanto

[math]\begin{cases} x_1=(-d+\sqrt{d^2+8s^2})/2 \\ y_1=d+x_1 \ \end{cases} => {(x_1=(-d+\sqrt{d^2+8s^2})/2),(y_1=(d+\sqrt{d^2+8s^2})/2):}[/math]

.

Ecco trovae le misure delle due diagonali.

Domande e risposte

Hai bisogno di aiuto?
Chiedi alla community