_Steven
Ominide
1 min. di lettura
Vota

Concetti Chiave

  • Calcolo dell'accelerazione: viene determinata tramite la formula della forza netta applicata al cubo lungo la rampa.
  • Forza di attrito considerata: il calcolo include la forza di attrito pari a 5.00N che influisce sull'accelerazione.
  • Determinazione della velocità finale: utilizzo della formula del moto rettilineo uniforme per calcolare la velocità finale.
  • Alternativa con energia: si può usare il principio di conservazione dell'energia includendo il lavoro della forza di attrito.
  • Risultati consistenti: entrambe le strategie di calcolo forniscono lo stesso risultato per la velocità finale.

Un cubo di 3kg scivola su una rampa che forma un angolo di 30° lunga 1m , con forza di attrito 5.00N

La velocità  iniziale é zero.

Determinare

i)L'accelerazione

ii)La velocità  finale al termine della rampa.


Iniziamo a calcolare l'accelerazione

[math]F= m \cdot g \cdot \\sin heta-F_a=ma[/math]

quindi

[math]a=(3.00kg \cdot 9.80(m/s^2) \cdot \\sin30-5.00N)/(3.00Kg)=3.23m/s^2[/math]

Si può applicare direttamente la formula apposita per il secondo punto, stando attenti al significato dei singoli termini.

[math]v_f^2-v_i^2=2as[/math]
, dove però
[math]s[/math]
è lo spostamento dal punto preso come origine nella direzione dell'accelerazione e della velocità  (dato che il moto è rettilineo) e quindi parallela al piano inclinato (a 30°dall'orizzontale); da cui, visto che
[math]v_i=0[/math]
e che
[math]s=1 m[/math]
, possiamo dire che in modulo

[math]|v_(f)| =|\sqrt{2a}|[/math]

In alternativa possiamo usare il principio di conservazione dell'energia considerando anche il lavoro compiuto dalla forza di attrito:

[math]mgh=mgs\\sin heta=1/2mv_f^2+F_ds=>v_f=\sqrt{2(g\\sin heta-F_d/m)s}=\sqrt(2a)[/math]

Basta poi sostiruire il valore di

[math]a[/math]
per trovare la velocità .

Come si nota, il risultato è lo stesso malgrado le due diverse strategie.

FINE

Domande e risposte

Hai bisogno di aiuto?
Chiedi alla community