Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Esercizio 3.
Considerare il seguente circuito.
Esattamente in questa forma con quanti transistor è possibile implementarlo?
2+2+10+6+8=34
Supponendo che ogni singola porta abbia un ritardo dato da numero di transistor moltiplicato 50ps, individuare il percorso critico e dire i tempi.
Esattamente in questa forma con quanti transistor è possibile implementare
EQUAZIONI DI DE MORGAN
Esercizio 4
Considerare il seguente circuito.
Convertirlo in un circuito composto esclusivamente di porte NAND e NOT (la solita trasformazione di DeMorgan).
In questa nuova forma con quanti transistor è possibile implementarlo?
And
- 00 - 0
- 01 - 0
- 10 - 0
- 11 - 1
Nnand
- 00 - 1
- 01 - 1
- 10 - 1
- 11 - 0
Esercizio 4
Considerare il seguente circuito.
Scelgo questo percorso perché mi produce tutte le variazione di Z
Variazione di Z
- A: 1
- B: 1
- C: 1 -> 0
Esercizio del tutor messo su Teams.
Considerare il circuito di figura. I flip-flop sono sensibili ai fronti positivi e hanno tempo di propagazione di 2ns, tempo di setup di 1ns e tempo di hold di 0.5ns. Le porte NAND hanno un ritardo 2.5ns. I segnali di input evolvono come descritto di seguito. Quanto valgono n.1 e out all'istante in cui viene eseguita $stop$?
always #5 clock = ~clock; initial begin clock = 0; im.1 = 0; im.2 = 0; stop; end im.1 e out all'istante in cui ho $stop$. NAND 00 | 0 01 | 1 10 | 1 11 | 0Prima transizione
mS | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
ck | | | | | | | | | | | | |
im.1 | -------------------------------------- |
im.2 | --------------------------------- |
n.1 | ------------ ------- |
out | ------------------------------------- |
- τpropagazione = 2ns
- tsetup = 1ns (tempo stabile prima del fronte positivo)
- thold = 0.5ns (tempo stabile dopo il fronte positivo)
NAND con ritardo 2.5ns:
14,5 msNon sto rispettando il tempo di setup → devo procedere al colpo di ck successivo.
Simulazione Primo Parziale
Consideriamo il seguente circuito
NAND
- 00 | 1
- 01 | 1
- 10 | 1
- 11 | 0
Questo circuito, in questa forma può essere realizzato con 36 transistor.
Le porte NOT hanno un ritardo pari a 100ps, le NAND a 2 ingressi 150ps, le NAND a 4 ingressi 200ps.
Il ritardo lungo il percorso critico è 450 ps.
Quali dei seguenti ingressi stimolano il percorso critico? Indicare tutte le risposte corrette (nessuna, una, due... tutte quante).
- A=0, B cambia, C=1, D=0 ☑
- A=1, B=0, C=0, D cambia ☑
- A=0, B=0, C cambia, D=1 ❌
- A cambia, B=1, C=1, D=1 ❌
Stimola la Z ma non si tratta del percorso critico.
Esame 27 Gennaio 2021
Completare la tabella di verità
- A B Z
- 0 0 0
- 0 1 1
- 1 0 1
- 1 1 0
Aperti R=∞ C=10pF
Chiusi R=200Ω
0.7 RC= 1.4 *10-8 = 1.4 ns
0.7 (2)RC= 2.8 *10-8 = 2.8 ns
4.4 +2.8 =7.2
Transizione più lenta 4200 ps
Transizione più veloce 2800 ps
Ogni casella ims, indicare in quale istante completa una transizione
NOT 50psAND 100psNAND 300psOR 200psNOR 125ps
propagazione 125pssetup 50pshold 25ps
Q1
Prima transizione
0ps
Seconda transizione
0ps
Q0
Prima transizione
1ms + 125 = 1125ps
Seconda transizione
4ms + 125 = 4125ps
Ragionamento:
Tempo di propagazione massimo della rete, significa che devo farlo in modo che la variazione (che io sto indicando con 1) sia la responsabile della variazione in uscita della porta logica.
Trattandosi di porte NOR significa che gli altri ingressi devono valere 0.
Il testo mi chiede il tempo di propagazione massimo, quindi devo fare in modo di usare la porta logica che impiega più tempo. Se non posso usare quella che impiega più tempo, passo alla successiva.
L'unica porta che riesca a farmi variare è:
Questo è per forza 0.
Invento!
NOT + 280 + 210 + 15
Se però non considero la NOT
No 2 NOT
A=0B=1
Tempo di propagazione massimo:
210 + 210 = 420 ps
È quella che mi causa la variazione.
Esercizi su reti sincrone
Esame del 17 luglio 2019. Esercizio 2.Considerare il seguente circuito tracciato su PSPICE
In questa forma quanti transistori occorrono per realizzare la parte combinatoria (quindi esclusi i flip flop) e quanti ne occorrerebbero se venissero utilizzate porte NAND al posto di AND e OR? (ovviamente senza cambiare la funzionalità del circuito)
AND/OR 7 8 NAND 6 10Analizzando il circuito comprendere (con grande attenzione) la seguente tabella di verità e l'andamento nel tempo, il primo led rappresenta l'uscita 0, 1, linea vuota = indeterminato, le righe vuote nel grafico possono servire.
- Se l'esercizio non mi aveste dato gli 0 e gli 1 di D1 e D0 avrei dovuto capire dal circuito di porte logiche che lasciando costantemente A = 0, B = 1 ottengo in uscita sempre D1 = 0 e D0 = 0.
3 + 36 + 24 = 63
Tc + Tsetup + 100ps + D1
PERCORSO CRITICO
75 + 275 + 275 = 625