vuoi
o PayPal
tutte le volte che vuoi
lem succ
∀ε>0 ∃α ∈ ℕ : |αωₙ-ℓ|<ε ∀n ≥ α⁻1
lem pazzo
∀ε>0 ∃x₀>0 : |g(x)-ℓ|<ε ∀x ∈ ]x₀-δ ; x₀+δ[
IPOTESI
lem g(x)=ℓ ⟺ ∀{xₙ}⊆A-{x₀} : xₙ⟶x₀ ⟹ (g(xₙ)-ℓ)⟶ℓ
DIM:
P⇒Q
Q̅⇒P̅
∀ε>0 ∃x₀>0 : |g(x)-ℓ|<ε ∀x ∈ ]x₀-δ ; x₀+δ[
NEGANDO
∃ε>0 : ∀δ>0, |g(x)-ℓ|≥ε per alcuni valori x∈]x₀-δ ; x₀+δ[
δ=1n
∃{xₙ}⊆]x₀-1m ; x₀+1m[ : |g(xₙ)-ℓ|≥ε ∀n ∈ ℕ
x₀-1m < xₙ < x₀+1m ⟹ xₙ⟶x₀
Ipotesi
g: A → ℝ
x₀ p.d.c.
Se
lim x→x₀ g(x) = ℓ
DIM.
lim x→x₀ g₁ = ℓ
∀ε>0 ∃δ>0 : |g₁₋ℓ|< ε ∀x∈ (x₀-δ), x≠x₀
ℓ - ε < g(x) < ℓ + ε ε = ℓ⁄2
ℓ - ℓ⁄2 < g(x) < ℓ + ℓ⁄2
g(x) → ℓ⁄2
Se ℓ = +∞
∀ε>0 ∃δ>0 : g(x)>M ∀x∈(x₀-δ, +∞) ∉ C
Sia a1, a2, an...
An monotona -> regolare, cioè ammette limito
Ipotesi
an monotona
crescente => an ≥ an+1
-∞ < l < ∞
an → l ∈ ℝ∞
- an crescente, limitata
- an crescente, ma illimitata
Dim. 1
Ris. per assur. poiché monot.
∀ɛ > 0 ∃n̄ : l - ɛ < an∞
- l - ɛ < an ∞ an ≤ l ≤ l + ɛ
- l - ɛ con α ɛ < ∊
an ≠ l
an < an crescente
∃ n̄ : (ann̄) ∞ ≥ M
an > ann ∞ ≥ M
an ≥ M
an > ann
falso, ∃ n̄ : (ann̄) ≥ M ∀n ≥ n̄
an ∞ ≥ an ∞ ≥ M