- ln|x| ± x/2± 1 = = ln|x|± 1
1/x± 1 + 1/x - ln|x|+c
ln|x| ± x
ln|a|ln≤
♮
-∫c 1 1/x dx + ∫c 1 1/x2 dx + ∫c 1 1/x+2 dx ∫ [ln(x)]c 1
x-2x/∑
lim c → ±8 ∫c 1 1/x dx = lim c → 8 = - ln|c| + ln|c| + [±c/2]
∫ ln(x) 1/x
∫ac x ⋅ e-x2 dx + limn→∞ ∫mn x2 dx + limμ→∞ ∫cμ x ⋅ e-x2 dx
g(x) = e-x2 dq(x) = xe-x
q(x) = x q'(x) = x
⇒
-2e-x⋅x - ∫(1, -2e-x
⇒
-2e-x⋅x - 2∫e-x dx = -2e-x⋅x + 2e-x
2e-x(x+1)
∫aex dx = ex + c ⇒ ∫ab e-x dx = limμ→∞ - [e-μ] = limμ→∞ -e-μ |a
[-e-μ] - [-e-a] = e-a
Sostituiamo
9e2x = 3(3oe2x) + 2 · 6a0e3x + 2e3x
9a0ex = 9a0e3x + 20oe3x - 2e3x = 20 2aoe3x + 2e3x
Y = Yo + μ(X)
Y = c1ex + c2e2x + 20oe3x
YII = 3Y'+2Y - eX + 2e3x
λ2 - 3λ + 2 ≥ 0
3τ / 2
Yo = c1ex + c2e2x
μ(X) = X · D0eX (a0o + e3X (l - 0o))
μ(X) = a0oXeX + lOoe3X
μ(X) = a0oXeX + a0XeX + 3lOoe3X
y - y0(x) = ekmx C1[Xlogx - 2]ekmx
y[1] = 0 x - x0 = ekmf[c - 1] = 0
y - e = eemx{y' + x tany = 0y[0] = 1/2π}dy/dx = -x tany => dy/tany = -x dy
∫-4/tany dy = -∫x dx + blog -1/2 π2+c
-
Appunti di Analisi Matematica 1 - Analisi 1
-
Analisi Matematica 1
-
Analisi matematica 1 - Esercizi
-
Analisi Matematica 1 - Appunti