Tavole e Formulari Formule notevoli
2
2 ∀x ∈
cos x + sin x = 1, R π
∀k ∈ + kπ
sin x = 0 se x = kπ , , cos x = 0 se x =
Z 2
π
sin x = 1 se x = + 2kπ , cos x = 1 se x = 2kπ
2 π
−1 − −1
sin x = se x = + 2kπ , cos x = se x = π + 2kπ
2
± ±
sin(α β) = sin α cos β cos α sin β
± ∓
cos(α β) = cos α cos β sin α sin β 2 −
sin 2x = 2 sin x cos x , cos 2x = 2 cos x 1
−
x y x + y
−
sin x sin y = 2 sin cos
2 2
− x + y
x y
− −2
cos x cos y = sin sin
2 2
− −
sin(x + π) = sin x , cos(x + π) = cos x
π π −
sin(x + ) = sin x
) = cos x , cos(x + 2
2 x
a y
x+y x y x−y x xy
a = a a , a = , (a ) = a
y
a
∀x,
log (xy) = log x + log y , y > 0
a a a
x − ∀x,
= log x log y, y > 0
log a a
a y y ∀x ∀y ∈
log (x ) = y log x, > 0 , R
a a
498 Tavole e formulari Limiti notevoli
α α
lim x = +∞ , lim x = 0 , α > 0
x→+∞ +
x→0
α α
lim x = 0 , lim x = +∞ , α < 0
x→+∞ +
x→0
n
a x + . . . + a x + a a
n 1 0 n n−m
lim = lim x
m
b x + . . . + b x + b b
x→±∞ x→±∞
m 1 0 m
x x
lim a = +∞ , lim a = 0 , a> 1
x→+∞ x→−∞
x x
lim a = 0 , lim a = +∞ , a< 1
x→+∞ x→−∞ −∞
lim log x = +∞ , lim log x = , a> 1
a a
x→+∞ +
x→0
−∞
lim log x = , lim log x = +∞ , a< 1
a a
x→+∞ +
x→0
lim sin x , lim cos x , lim tan x non esistono
x→±∞ x→±∞ x→±∞ π
∓∞ ∀k ∈ ±
lim tan x = , , lim arctan x =
Z 2
x→±∞
±
( )
π
x→ +kπ
2 π
±
lim arcsin x = = arcsin(±1)
2
x→±1
lim arccos x = 0 = arccos 1 , lim arccos x = π = arccos(−1)
x→+1 x→−1 − 1
1 cos x
sin x = 1 , lim =
lim 2
x x 2
x→0
x→0 "
! x
a 1
a ∈
= e , a , lim (1 + x)
lim 1 + = e
R x
x
x→±∞ x→0
log (1 + x) 1 log(1 + x)
a
lim = , a > 0; in particolare, lim =1
x log a x
x→0 x→0 x
x −
− e 1
a 1 = log a , a > 0; in particolare, lim =1
lim x x
x→0
x→0 α −
(1 + x) 1 ∈
lim = α , α R
x
x→0 Tavole e formulari 499
Tavola delle derivate di funzioni elementari
$
f (x) f (x)
α α−1 ∀α ∈
x αx , R
sin x cos x
−
cos x sin x 1
2
tan x 1 + tan x = 2
cos x
1
√
arcsin x 2
−
1 x
1
√
−
arccos x 2
−
1 x
1
arctan x 2
1 + x x
x (log a) a
a 1
|x|
log a (log a) x
sinh x cosh x
cosh x sinh x
Regole di derivazione
! " $ $ $
αf (x) + βg(x) = αf (x) + βg (x)
! " $ $ $
f (x)g(x) = f (x)g(x) + f (x)g (x)
$
# $ $ $
−
f (x)g(x) f (x)g (x)
f (x) = % &
2
g(x) g(x)
! " $ $ $
g(f (x)) = g (f (x))f (x)
-
Analisi matematica 1 - Formulario
-
Formulario analisi matematica 1
-
Formulario Analisi matematica 1
-
Formulario Analisi matematica 1