vuoi
o PayPal
tutte le volte che vuoi
determinare ω per cui la configurazione è stabile
la configurazione è stabile per
- sen ψ ≠ 0
- ω 2 > 3/2 k/m
z1 = l/2 cos ψ
z2 = l cos ψ - l/2 cos ψ = l/2 cos ψ
XB = l sen ψ
Up = -mg z1 - mg z2
= -mg l/2 cos ψ + mg l/2 cos ψ = 0
UK = 1/2 k (XB)2 = 1/2 k l2 sen2 ψ
Uc = 1/2 1/2 ω2 d2 Σ 1/3 m l2
= Uc = 1/2 I ω2, I = ml2
Uc = 1/2 Σ 1/3 m l2 sen ψ il3/(3 l)
- 1/2 m ω2 sen ϕ z1 IL
Utot = -{m l ω2 sen ψ - k l2 sen ψ
Utot(de) = {sen ψ/2 m l2 ω2 cos ψ - k l2 cos ψ} = 0
{cos ψ/1/3 ml2 ω2 - k l2} = 0
{sen ψ cos ψ (2 ml2 ω2 k l2)} = 0
sen ψ cos ψ = 0
ω2 = 3/2 ke K
Utot = cos ψ = 0 π/2, 3 π/2
Utot π/2 = 3/2 ω2 ml2 + K k2 = 0
ω2 - 3/2 k m
tot (π/2) = 2/3 ml ω2 - ke K
ω2 - 3/2 m > k e
Utot 3/2 π = 3/2 l ω2 - ke K
ω2 - 3/2 k m > 0
AB = l
BC = 3l
Determinate w t. c. n. ha configurazione stabile
Uk = 1/2 k xA2
= 1/2 k xC2
Uc = 1/2 ω2ρ ds (s senφ)2 + ∫ 1/2 ω2ρ ds′ (s senφ)2 =
= ∫ 1/2 ω2ρ sen2φ s3/30 + ∫ 1/2 ω2ρ sen2φ s′3/3l =
= 1/6 ω2ρ sen2φ + 4/3 ω2ρ sen2φ l3 =
= 5/6 ω2ρ sen2φ l3 - 3 ω2 sen2φ ml2/2
Up = -mg z1 + l 1/2 mg z2, z1 = l/2 cosφ, z2 = -l cosφ
Up = -mg 2 cosφ + mg l cosφ - l/2 mg cosφ
Utot = 1/2 k l2 sen2φ - 1/2 k 4 l2 sen2φ + 3 ω2 sen2φ ml2 + 3 l mg cosφ/2
dUtot/dφ = -1/2 kl2senφ cosφ - 2 kl2senφ cosφ + 3/2 ω2senφ cosφ ml2 - 3/2 l mg senφ
senφ (5 k2l2 + 3 ω2cosφ ml2 - 3 mg)/2 = 0 ⇒ senφ = 0 = φ = 0
⇒ φ = π
cosφ (-5 k2 l2 + 3 ω2m l2)/2 + 3/2 l mg
cosφ = -3/10 k2l2subg/9 + 6 ω2m l = -3 m g/10k l2 + 6 ω2m l
asta - l, m
corpo - P, m
Ua = m g za
Ua = m g l cos ψ
za = - l⁄2 cos ψ
Up = m g zo
Up = m g l cos ψ
zo = - l cos ψ
Ucp = 1⁄2 m ω2 r2 sen2 ψ
Uca = 1⁄2 ω2 ρ sen ψ dsi = ...
Utot = m g l cos ψ ...
... = 3⁄2 m g l cos ψ + 2⁄3 m ω2 l2 sen ψ cos ψ
... sen ψ = ...
cos ψ = 9⁄8 ω2 > 1
cos θ = ...
U(0) = ...
Determinare ω tale che la configurazione di equilibrio è stabile.
Molle collegate in serie ⇒ \( \frac{1}{K_{eq}} = \frac{1}{K_1} + \frac{1}{K_2} \), ma \( K_1 = K_2 \) ⇒ \( \frac{1}{K_{eq}} = \frac{2}{K} \)
\( U_k = \frac{1}{2} K \frac{X^2}{4} \) \( X = 2\ell \sin \varphi \)
⇒ \( U_k = \frac{1}{4} K 4 \ell^2 \sin^2 \varphi \)
\( U_A = -mg \cdot 2o \) \( 2o = \frac{\ell}{2} \sin \varphi \)
\( U_c = \frac{1}{2} \int^1_0 ω^2 \rho d s \int^s_0 \rho (\ell \sin \varphi + s \sin \varphi )^2= \)
\( = \frac{ω^2}{2} \rho \ell \sin^2 \varphi \frac{\ell^3}{3} \cdot \frac{3}{2} \int^1_0 ω^2 d s \rho (\ell^2 \sin^2 \varphi + 3s \sin^2 \varphi + 2 \ell \sin \varphi s \sin \varphi ) = \)
\(= \frac{1}{2} ω \rho \ell \sin \varphi \ell^2 + \frac{1}{4} ω^2 \rho \ell \sin \varphi + \frac{1}{3} ω^2 \rho \ell \sin \varphi \ell^2 =\)
\(= \frac{2}{3} ω m \cdot \sin \varphi (\ell \sin \varphi X) + \frac{\ell^2}{3} \sin \varphi + 2 \int s \sin \varphi \frac{\ell^2}{2} =\)
\(= \frac{ω}{2} m \ell \sin \varphi \frac{\ell^2}{3} - \frac{ω m \ell \ell \sin \varphi}{4} + \frac{\omega^2 m}{2} \varphi \ell \frac{\ell^2}{3} = \)
\(= \frac{3}{6} ω m \ell \sin \varphi + \frac{1}{2} ω m \ell \sin \varphi + \frac{1}{4} ω m \ell \sin \varphi \frac{\ell^2}{3} =\)
\(= \frac{1}{3} ω \ell \sin \varphi \ell \ell + ω \cdot m \ell \sin \varphi \ell \)
\(- ω \sin \varphi \cdot m \ell \ell + \frac{\ell \cdot m \ell \sin \varphi \right = \frac{4}{3} m ω^2 \ell \sin \varphi \)
\(U_{tot} = -k \ell^2 \sin^2 \varphi + m g \ell \sin \varphi + \frac{4}{3} m ω^2 \ell \sin \varphi \ell^2 \)
\( \frac{dU_{tot}}{d\varphi}= -k \ell^2 \cos \varphi \sin \varphi + mg \ell \cos \varphi + \frac{4}{3} m ω^2 \sin^2 \varphi \cos \varphi \ell^2 =\)
\(\cos \varphi (- 2 k \ell^2 \sin \varphi + mg \ell \cos \varphi + \frac{4}{3} m ω^2 2 \sin \varphi \cos \varphi \ell^2) = 0\)
\(\cos \varphi (- 2 k \ell^2 \sin \varphi + mg \ell \cos \varphi + \frac{8}{3} m ω^2 \ell^2) = -mg \ell \)
\(\cdot \sin \varphi = - ( - 2 k \ell^2 \cos \varphi + \frac{8}{3} m ω^2 \ell^2) \)
\(\cos \varphi = 0 = \frac{\pi}{2\cdot \frac{3 \cdot \pi}{2}} \)
\(\cdot \sin \varphi = \frac{mg}{2k \cdot \ell \frac{8}{3} m ω^2 \right ) \cdot > 1 \, ; = 1 \, < 1