Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
State and Output Response: Time Domain Analysis
Example 4.41 (Battelotti)
A = 1 | 0 | 12 | 0 | 00 | 1 | 0
x0 = 110
u(t) = 0
calculate the zero input to state response
> calculate eigenvalues
det(λI - A) = λ |1 -1 0|| 2 λ 0|| 0 2 λ|
= (t-λ)(t2-1, t-2)
= (λ-1)[(λ-1)t22] - 4
- λ1 = 0
- λ2 = 1
- λ3 = 1
> calculate e vectors
(A-λiI)zi = 0 →| 1 0 1 | |zi1| = |0|| 2 0 2 | |zi2| = |0|| 0 1 2 | |zi3| = |0|
→
- zi3 = zi1
- zi4 = ¼1/√(3)
- zi5 = 1/√(3)
> equivalently i can write zi = λ11
(A-λ2I)z2 = 0
| 0 0 01 | |zj we have asymptotic stability only if a ≥ 0
=> now we calculate the response:
L{yforced}(s) = P(s) L{v(t)}(s) sI/O transfer function = C(sI - A)⁻¹ B + D => P(s), 1/(s+a)
Lt cos(t)(s) = s/s²+1
=> L{yₓ₂ₜ}(s) = s___p(s) which is a strictly proper function so we can use …
=> p(s) = …
=> comparing we obtain A: - 2/(1+a)², B: 2a/(1+a)²
=> now we go back in time:
-> G(s): 100/s
5
and no more constraints on G (1
could be even worth to
send
the gain k=100, but he won't do that.
Before doing it, must update the Bode plots to the new function P(s):
100/s
s
by the Bode plot of P(s):
100/s
s
log w have at w 0.1 rads -> magnitude: 80 dB
phase: -186 -> -m60
-> have to decrease the magnitude by 80 dB and me by 60°
-> increase m°, decrease magnitude (care D) -> combine anticipative action to mend,
re phase and alternative action to drop re magnitude
otherwise simply by a proper
control action as r;
can do that -> have no constraints
on G(i)
-> always start with the anticipative action (no work on the phase) and then alternative
- we can choose me=16 and wi=4 rads/s -> obtain me=60
and wt=w1>> wi->40
-> G(s): 100/s
1+τoS/
m*
Gα(s)
-> at w*: 100/s
1-τoS/
m*
gives 12 dB
60°
-> now the starting values are:
80; 12; 92 dB
phase 170; 60 = -120 -> me=60°
- the alternative action must be of -92 dB 0.0101
-> G(s): 100/s
1+4τ0S 0.0101
1-2.5S
-> from Bode plot we do Nyquist plot of P(s).G(s)
-> o o.c. w occurs around -1
n=0
-> the closed loop system is a stable
s = 2 do Bode plots with sum Arg(P(jw)) = N * pi
w= w0
from that Nyquist plot become
exercise 1.5
P(s) = (5s)^2 / s(s-1)(5s+1)(s+3) => n_p = 1, z_1: z_2: -1, p_1: -1, p_2: 2, p_3: -3, p_4: 0
non considerando il polo m s=0 ho P(0) = 1 / (x1)(x2)(x3)
|P(0,i)|: 6.3 dB
Root Locus (module 10)
Exercise 2.1
P(s):
s : n. number of poles=3, p₁=0 p₂=1 p₃=-2m: n. number of zeros=0n - m = n° root locus=3ξ: asymptotic center: {0-1-2} / 3n-m=1
- have to determine singular points, in which more than one curve pass.
R(s,k): 1 + k P(s): 5(s+1)(s+2) / k, : 5 (3s-25 k 5(s+1)(s+2) (s+1)s(s+2)
- 1 / s₂
- 1 / s
- 1 / s₁
- 1 / s
- 1 / s₁₂
- - 5(2)(35+2.5*6) (25-2.5)5-5
- - (35+6)5-2
{5(s+1)(s+2)} s(s+1)(s+2)
- {
- s(5k) {s35-25}k=0
- s35-25{3}k=0
- 35+6s42=0
s:3/⁵ : s₁= 1 / sq. 3⁵
s₂: -sq 1/⁵³:-0.423
- {k: 3/⁵₃
- {k₂: 3/⁵₃
s₂: -sq 1/⁵/-1577
Exercise 2.2
- P(s): s4↑ -¹...₁=-1 ₁=₂=0 ₃=-3
- n=3 m -1.
- n−m = 2
- s₀-{1¬0 3}- (¹₂)2
Singular points:
- R(s,k): = 1:k P(s): s3/35
- :k5+k (x=s3/2) ks=3 ks k o o-{:} s(5s3/3)=0
- k= s2*35 =25 & # 0/(2-5)
- s(s+1)(s+2) s(s+4)/ s(s)(s₂)
- {1/}
- if -⁵ # 5
- 1/s ₣₃
- -1/s₃:1/2(2/3:3-15)-0.5005
- 1/s₄
- k= (s/³)=³5
- -2(6)=s2x(s)
- (²5s3) k=s4+5
- 2s+6> [5>k]
3s5 - 55s4 + 583 - 5s (21g + 12k2) - 144k2
V12 = 5(210 + k2 - 290) - k2 + 1/5 (37 + 36k2)
V2 37 + 36k2
V2 360k2
V' = 5 210 + 72k2
k2(37 + 36k2)
V2 = 8k2 - 9 x 8(72 k2 - 11240k2 + 79992)
37 + 36k2
(58/32 - 11240 k2 + 79992)
37 + 36k2
5.8
3/36
0.9
N + - -
D - + +
⇒ Ok k2<0
Now draw the root locus of Et(s):
P0: 0
P1: -1
P2: 7/33
P3: 7/33
P4: 1/2
P5: 9/33
R(s; k) = (3(s+4)(s+5)(s+4) 1. k + 2(s - 2))/s(s+1)(s+5)(s+4)
Js
-4s3 - 1653 - 11.6s - 216 + 12k
So: 4
-1
(2)
-7/3