vuoi
o PayPal
tutte le volte che vuoi
TROVARE IL FEEDBACK GAIN
Given the open loop system G(s) and considering the closed loop system with negative unitary feedback , find
the state feedback gain [K1 K2] such that the damping factor is sqrt(2)/2 and the settling time at 2% is 16s
G(s) = 0.03 (s+1)/(s*(s+0.01)) = (0.03*s + 0.03)/(s^2+0.01*s)
% DEFINIZIONE DEL SISTEMA G(S)
n = 0.03 * [1 1]; % Numeratore di G(s)
d = [1 0.01 0]; % Denominatore di G(s)
G = tf(n,d)
G =
0.03 s + 0.03
-------------
s^2 + 0.01 s
Continuous-time transfer function.
Model Properties
% Conversione a rappresentazione in spazio di stato
[A, B, C, D] = tf2ss(n, d);
% SPECIFICHE DI PROGETTO
delta = sqrt(2)/2; % Fattore di smorzamento
Ts = 16; % Tempo di assestamento (2%) in secondi
wn = 4 / (delta * Ts); % Frequenza naturale
% Calcolo dei poli desiderati
p1 = - delta * wn + 1i * delta * wn;
p2 = - delta * wn - 1i * delta * wn;
poles = [p1, p2];
% Calcolo del guadagno di feedback dello stato [K1 K2]
K = -place(A, B, poles)
K = 1×2
-0.4900 -0.1250
TROVARE LO STATE FEEDBACK E L'INPUT DELL'OBSERVER
Given the following system, find the state feedback u=kx and the observer input -Ly such that
1. the feedback gain K sets the system poles in [-1-i,-1+i,-3];
2. the observer gain L sets the observer poles in [-3-3i,-3+3i,-6]
3. Find the transfer function of the controller
4. Find the closed-loop transfer function of this two systems
G(s) = 12 / s(s−2)(s+6) 2
n = 12;
d = [1 4 -12 0];
[A,B,C,~]=tf2ss(n,d);
G = tf(n,d)
G = 12
------------------
s^3 + 4 s^2 - 12 s
Continuous-time transfer function.
Model Properties
p = [-1-1i,-1+1i,-3];
K=-place(A, B, p)
K = 1×3
-1.0000 -20.0000 -6.0000
po=[-3-3i,-3+3i,-6];
L = -place(A', C', po);
L=L'
L = 3×1
-5.6667
-2.8333
-0.6667
[nc, dc] = ss2tf(A+B*K+L*C, -L , K, 0)
nc = 1×4 0 -66.3333 -407.0000 -54.0000
dc = 1×4
1.0000 13.0000 82.0000 308.0000
G_C = tf(nc,dc);
G_CL = feedback(G*G_C, 1, +1) 3
G_CL = -796 s^2 - 4884 s - 648
----------------------------------------------------------
s^6 + 17 s^5 + 122 s^4 + 480 s^3 + 1044 s^2 + 1188 s + 648
Continuous-time transfer function.
Model Properties
G_CL2 = feedback(G, G_C, +1)
G_CL2 = 12 s^3 + 156 s^2 + 984 s + 3696
----------------------------------------------------------
s^6 + 17 s^5 + 122 s^4 + 480 s^3 + 1044 s^2 + 1188 s + 648
Continuous-time transfer function.
Model Properties SISTEMA ECONOMICO NAZIONALE
The national economic system can be represented by the following scheme. G_P(s) is the transfer function
describing the production; G_C(s) is the transfer function describing the national consumption; K_T represents
the government's taxation. Moreover, R(s) is the government's spending and Y(s) is the national income. Let
K_P=1.2, K_C=3, K_T=0.35, tau1=2 and tau2=3. Find a realization of the system G(s)=Y(s)/R(s), i.e. matrices
A,B,C and D.
% Parametri
K_P = 1.5;
K_C = 3;
K_T = 0.3;
tau1 = 1;
tau2 = 2;
% Definizione delle funzioni di trasferimento
s = tf('s');
Ge = (K_P *(1+tau2*s))/((1+tau2*s)*(1+tau1*s)-K_C*K_P*(1-K_T));
% Conversione a rappresentazione stato-spazio
[A, B, C, D] = tf2ss(Ge.Numerator{1}, Ge.den{1})
A = 2×2
-1.5000 1.0750
1.0000 0
B = 2×1
1
0
C = 1×2
1.5000 0.7500
D =
0
Consider the national economic system found in the previous exercise whose input is now integrated. Knowing
that the values of the parameters are the same as the previous exercise, find the state feedback u=kx and the
observer input -Ly such that: 4