Anteprima
Vedrai una selezione di 8 pagine su 35
Economia e finanza delle Assicurazioni - Esercizi Pag. 1 Economia e finanza delle Assicurazioni - Esercizi Pag. 2
Anteprima di 8 pagg. su 35.
Scarica il documento per vederlo tutto.
Economia e finanza delle Assicurazioni - Esercizi Pag. 6
Anteprima di 8 pagg. su 35.
Scarica il documento per vederlo tutto.
Economia e finanza delle Assicurazioni - Esercizi Pag. 11
Anteprima di 8 pagg. su 35.
Scarica il documento per vederlo tutto.
Economia e finanza delle Assicurazioni - Esercizi Pag. 16
Anteprima di 8 pagg. su 35.
Scarica il documento per vederlo tutto.
Economia e finanza delle Assicurazioni - Esercizi Pag. 21
Anteprima di 8 pagg. su 35.
Scarica il documento per vederlo tutto.
Economia e finanza delle Assicurazioni - Esercizi Pag. 26
Anteprima di 8 pagg. su 35.
Scarica il documento per vederlo tutto.
Economia e finanza delle Assicurazioni - Esercizi Pag. 31
1 su 35
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

PREMI DI COMPETENZA

3) il al3l Dicembre 2004.

GRADO DI CONSISTENZA DELLE RISERVE TECNICHE

* * *

Definire la per le assicurazioni Credito e indicare i valori

RISERVA DI COMPENSAZIONE

minimo e massimo ammessi dalla legislazione vigente. 15

Esempio di domande per le quali all’esame è richiesta la risposta scritta

ECONOMIA E FINANZA DELLE ASSICURAZIONI

Supponendo che un’impresa di assicurazioni abbia iniziato l’attività nel 2003 e disponendo dei

seguenti dati contabili relativi al ramo R.C. VEICOLI A MOTORE:

Esercizio 2003 Esercizio 2004

Generazione 2003 Generazione 2004

(dati in migliaia di €)

Premi di tariffa di competenza 16.200 21.300

Importo dei pagamenti effettuati

nell’anno di accadimento dei

sinistri…………………………... 3.850 5.320

Importo dei pagamenti effettuati

nell’anno successivo a quello di

accadimento dei sinistri………... 5.620 ------

calcolare:

l) la complessiva a fine 2003 e a fine 2004, distinta per anno di generazione,

RISERVA SINISTRI,

con il METODO DEL CONTO DI SOTTOSCRIZIONE;

2) il valore dei dell'anno 2003;

SINISTRI DI COMPETENZA

3) la dei sinistri della generazione 2003.

VELOCITA’ DI LIQUIDAZIONE 16

Esempio di domande per le quali all’esame è richiesta la risposta scritta

ECONOMIA E FINANZA DELLE ASSICURAZIONI

Supponendo che un'impresa di assicurazioni abbia iniziato l'attività nel 2002 e disponendo dei

seguenti dati contabili relativi al ramo R.C. VEICOLI A MOTORE:

2002 2003 2004

Esercizio

(generazione) (data in migliaia di €)

Premi di tariffa di competenza 12.100 21.300 22.800

Importo dei pagamenti effettuati 2.960 3.560 4.180

nell'anno di accadimento dei sinistri

Importo dei pagamenti effettuati

nell'anno successivo a quello di

accadimento dei sinistri…………... 1.890 5.335 ------

Importo dei pagamenti effettuati nel

2° anno successivo a quello di

accadimento dei sinistri…………... 1.105 ------ ------

calcolare:

1) la complessiva iscritta in bilancio a fine 2004 e distinta per generazione,

RISERVA SINISTRI

con il METODO DEL CONTO DI SOTTOSCRIZIONE;

2)la dei sinistri della generazione 2003;

VELOCITA' DI LIQUIDAZIONE

3) il (pagati e riservati) (di competenza) della sola generazione

RAPPORTO SINISTRI A PREMI

2004. 17

Esempio di domande per le quali all’esame è richiesta la risposta scritta

ECONOMIA E FINANZA DELLE ASSICURAZIONI

Supponendo che per i sinistri della generazione 2004 siano disponibili i seguenti dati:

- importo complessivo delle liquidazioni ( L ) effettuate a tutto il 31 Dicembre 2004:

s y

146.000

- probabilità di eliminazione del sinistro (tasso annuo di eliminazione del sinistro):

nell'anno di accadimento: 0,210

nel 1° anno successivo: 0,405

nel 2° anno successivo: 0,130

nel 3° anno successivo: 0,150

nel 4° anno successivo: ….

nel 5° anno successivo: ….

nel 6° anno successivo: 0,013

dopo aver stabilito opportunamente i tassi annui di eliminazione del sinistro relativo al 4° e al 5°

anno di differimento,

calcolare:

a) la al 31 Dicembre 2004 con il per la

RISERVA SINISTRI METODO DI AMOROSO,

generazione considerata, precisando con cura i simboli introdotti e le ipotesi assunte a base del

metodo;

b) la dei sinistri della generazione 2004.

VELOCITA’ DI LIQUIDAZIONE * * *

Definire l' o agente per le gestioni in economia.

AGENTE DI CITTÀ 18

Esempio di domande per le quali all’esame è richiesta la risposta scritta

ECONOMIA E FINANZA DELLE ASSICURAZIONI

Supponendo che per i sinistri della generazione 2002 siano disponibili i seguenti dati:

- importo complessivo delle liquidazioni ( L ) effettuate a tutto il 31 Dicembre 2004:

s y

603.000;

- probabilità di eliminazione del sinistro (tasso annuo di eliminazione del sinistro):

nell’anno di accadimento: 0,302

nel 1° anno successivo: 0,182

nel 2° anno successivo: …….

nel 3° anno successivo: 0,141

nel 4° anno successivo: 0,091

nel 5° anno successivo: 0,005

nel 6° anno successivo: 0,014

- tasso annuo di interesse i = 0,055

- premi di tariffa di competenza dell’esercizio 2002: 1.378.000

calcolare:

a) la al 31 Dicembre 2004 con il per la

RISERVA SINISTRI METODO DI AMOROSO,

generazione considerata, precisando con cura i simboli introdotti e le ipotesi assunte a base del

metodo;

b) confrontare il valore di cui al sub a) con quello che si sarebbe ottenuto applicando al calcolo della

il

RISERVA SINISTRI METODO DEL CONTO DI SOTTOSCRIZIONE;

e precisare:

c) i di impresa che influiscono sulla determinazione dei tassi

FATTORI INTERNI ED ESTERNI

annui di eliminazione dei sinistri. 19

Esempio di domande per le quali all’esame è richiesta la risposta scritta

ECONOMIA E FINANZA DELLE ASSICURAZIONI

Data la seguente tavola che indica l’importo ( S ) dei sinistri della generazione k ( k = 0, 1, 2, 3, 4,

kh

5) liquidati nel corso dell’anno di differimento h ( h = 0, 1, 2, 3, 4, 5):

GENERAZIONE DIFFERIMENTO

0 1 2 3 4 5

(anno di accadimento) (dati in milioni di €)

(1999) 0 445 563 391 210 122 87

(2000) 1 618 742 400 208 144

(2001) 2 698 884 358 287

(2002) 3 752 901 417

(2003) 4 855 987

(2004) 5 1.021

1) si costruisca la corrispondente tavola delle dei sinistri delle

LIQUIDAZIONI CUMULATIVE,

generazioni sopra indicate;

2) si calcoli la al 31 Dicembre 2004, relativa alla sola generazione 2003 con

RISERVA SINISTRI

il METODO DELLA CATENA;

3) si scriva l’espressione generale di m (h = 1, 2,…,w)

h 20

Esempio di domande per le quali all’esame è richiesta la risposta scritta

ECONOMIA E FINANZA DELLE ASSICURAZIONI

Data la seguente tavola che indica l'importo ( L ) delle liquidazioni cumulative, dei sinistri della

kh

generazione k (k = 0, 1, 2, 3, 4, 5) liquidati e pagati nel corso dell'anno di differimento h ( h = 0, 1,

2, 3, 4: GENERAZIONE DIFFERIMENTO

0 1 2 3 4

(anno di accadimento) (dati in milioni di €)

(1998) 0 450 830 968 1.179 1.295

(1999) 1 507 949 1.162 1.257 1.325

(2000) 2 630 1.152 1.308 1.487 1.591

(2001) 3 752 1.346 1.499 1.570

(2002) 4 880 1.463 1.507

(2003) 5 902 1.521

(2004) 6 988

Calcolare:

1) i coefficienti di variazione m , j = 1, 2, 3, 4;

j

2) la al 31 Dicembre 2004, relativa a tutte le generazioni aperte, con il

RISERVA SINISTRI

METODO DELLA CATENA. 21

Esempio di domande per le quali all’esame è richiesta la risposta scritta

ECONOMIA E FINANZA DELLE ASSICURAZIONI

Supponendo che i macchinari di un’impresa industriale siano state assicurati contro i rischi dei

guasti accidentali alla condizione stabilire l’indennizzo che spetta

VALORE A NUOVO,

all’assicurato nel caso di un sinistro che abbia colpito due di esse (macchine A e B).

I dati (in migliaia di della perizia sono riassunti nella seguente tabella, che applica un

€)

pari al 32% del valore a nuovo:

DEGRADO

Macchina Valore assicurato Valore a nuovo Danno a nuovo subito Residuo

A 580 650 650 30

B 700 900 120 2

C 850 800 ….. ….

Totali 2.130 2.350 770 32

(Conformemente alla prassi del ramo guasti alle macchine fare la liquidazione dell'indennizzo per

SINGOLA MACCHINA DANNEGGIATA).

Stabilire infine quale indennizzo sarebbe stato corrisposto all’assicurato se le tre macchine avessero

costituito un’unica partita di polizza. * * *

Indicare le condizioni sotto le quali viene preferibilmente esercitata nel nostro mercato

l’ASSICURAZIONE DEL VALORE A NUOVO. 22

Esempio di domande per le quali all’esame è richiesta la risposta scritta

ECONOMIA E FINANZA DELLE ASSICURAZIONI

Supponendo che i fabbricati di un’impresa industriale siano stati assicurati contro i rischi

dell’incendio alla condizione stabilire l’indennizzo che spetta all’assicurato

VALORE A NUOVO,

nel caso di un sinistro che abbia colpito uno di essi.

I dati della perizia sono riassunti nella seguente tabella, che applica un pari al 20% del

DEGRADO

valore a nuovo: Valore Valore reale all’epoca Danno a Franchigia

Macchina Valore a nuovo

assicurato del sinistro nuovo subito fissa

A 1.400 1.600 1.280 280 2

B 800 800 640 …. 4

Totali 2.000 2.400 1.920 280 6

(Conformemente alla prassi del ramo incendi fare la liquidazione dell’indennizzo per il complesso

della partita assicurata) * * *

Indicare i requisiti che deve avere un per poter entrare a far parte del

INVESTIMENTO

di un’impresa di assicurazioni danni.

PORTAFOGLIO 23

Esempio di domande per le quali all’esame è richiesta la risposta scritta

ECONOMIA E FINANZA DELLE ASSICURAZIONI

Supposto che i macchinari di un’impresa siano assicurati contro i rischi dell’incendio per 8

milioni, 30%, franchigia relativa 1% del valore assicurato, tasso di premio 4,5 per ogni

LEE-WAY

mille di valore assicurato,

calcolare:

a) il conguaglio che dovrà versare a fine anno il cliente se egli dichiarerà un valore di esposizione di

9 milioni e 600.000 €;

b) l'indennizzo che gli verrà liquidato dall’assicuratore per un sinistro che abbia causato danni per

460.000 nelle due ipotesi di valore della preesistenza accertato dal perito:

€,

- 9 milioni e 200.000,

- 14 milioni.

€ * * *

Utilizzando la nozione esatta definire il (M.P.L.) per un

MASSIMO DANNO PROBABILE

rischio della classe C di cui sia nota la distribuzione dei sinistri. 24

Esempio di domande per le quali all’esame è richiesta la risposta scritta

ECONOMIA E FINANZA DELLE ASSICURAZIONI

Supposto che i macchinari di un’impresa siano assicurati contro i rischi dell’incendio per 80

milioni, 25% rappresentare graficamente l’andamento dell’indennizzo assicurativo in

LEE-WAY

caso di sinistro, nell’ipotesi che il valore dei beni in stato sano accertato da perizia sia 125 milioni.

Inoltre rappresentare, sempre graficamente, il vantaggio conseguito dall’assicurato rispetto

all’ottenimento di una deroga alla proporzionale con tasso pari a quello di lee-way e calcolare

l’importo del danno a partire dal quale detto fenomeno si verifica.

* * *

Definire la e dire che cosa la differenzia dalla

STIMA ACCETTATA STIMA PREVENTIVA. 25

Esempio di domande per le quali all’esame è richiesta la risposta scritta

ECONOMIA E FINANZA DELL

Dettagli
Publisher
A.A. 2012-2013
35 pagine
SSD Scienze economiche e statistiche SECS-P/11 Economia degli intermediari finanziari

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Sara F di informazioni apprese con la frequenza delle lezioni di Economia E Finanza Delle Assicurazioni e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università degli studi di Genova o del prof Zunino Roberto.