Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
LEZIONE 04/10/2013
Nozzles and Diffusors
h, T, p, v, p, s
Stagnation Properties
h0, T0, p0, v0, p0, s0 (total)
State that the fluid reaches ** when the stream is slowing down or to rest by means of reversible and adiabatic process.
We apply
- First law of thermodynamics (considering adiabatic process) = Δh +
- Mechanical equation conservation law Ideal O = vdp +
We integrate this relation between initial condition and total condition
O =
We follow an ideal process and an adiabatic process
ds = 0 (isentropic process)
Now
And also, about energy:
PV
PV = k/(k − 1) = [p0/p]k − 1 − 1) = c2/2
ρ0 = ρ [1 + (k − 1)/ 2c2/2PV]k/k−1
For definition
cs2 = ∂p/∂p |s = ∂/∂p [const ρk] = k const [ρk/ρ] = k p/ρ
Because when the entropy is constant:
ρk = const => p/ρk = const.
So k PV = cs2 C/Cs = M (Mach Number)
- M < 1 -> Subsonic
- M > 1 -> Hypersonic
Substituting above we hold:
ρ0 = p [1 + (k − 1)/ 2 M2 ]k/k−1
To compute the total density we consider P/Pk = p0/p0k (adiabatic transformation)
ρ0 = p [p0/P]1/k => ρ0 = p
= ρ [1 + (k − 1)/ 2M2 ]k/k−1
LEZIONE 07/10/2013
REMEMBER THAT TO INCREASE VELOCITY:
- NOZZLE (dc > 0)
THE PROCESS IS ADIABATIC AND ISOENTROPIC
HERE WE HAVE AN EXPANSION
THE TOTAL ENTHALPY IS:
h10 = h1 + c12⁄2
Qe = 0 Li = 0 ⇒ Qe + Li = Δh + ΔEk.p.g.w
Δh0 = 0 ⇒ h20 = h10
dc > 0
- UPSTREAM CONDITION
- DOWNSTREAM CONDITION
ηi = 1
WHERE cs = √ k P⁄ρ
FOR IDEAL GAS ⇒ cs = √kRT
FOR DIFFUSER (dc < 0)
ηi = 1
So in this specific case we can write (substituting)
Ae = G/sqrt(k * p0 * ρ0) [ 2/k + 1 ]k + 1/k - 1
P2/p0 P2ppP