Anteprima
Vedrai una selezione di 10 pagine su 143
Thermal And Hydraulic Machine Part2 Pag. 1 Thermal And Hydraulic Machine Part2 Pag. 2
Anteprima di 10 pagg. su 143.
Scarica il documento per vederlo tutto.
Thermal And Hydraulic Machine Part2 Pag. 6
Anteprima di 10 pagg. su 143.
Scarica il documento per vederlo tutto.
Thermal And Hydraulic Machine Part2 Pag. 11
Anteprima di 10 pagg. su 143.
Scarica il documento per vederlo tutto.
Thermal And Hydraulic Machine Part2 Pag. 16
Anteprima di 10 pagg. su 143.
Scarica il documento per vederlo tutto.
Thermal And Hydraulic Machine Part2 Pag. 21
Anteprima di 10 pagg. su 143.
Scarica il documento per vederlo tutto.
Thermal And Hydraulic Machine Part2 Pag. 26
Anteprima di 10 pagg. su 143.
Scarica il documento per vederlo tutto.
Thermal And Hydraulic Machine Part2 Pag. 31
Anteprima di 10 pagg. su 143.
Scarica il documento per vederlo tutto.
Thermal And Hydraulic Machine Part2 Pag. 36
Anteprima di 10 pagg. su 143.
Scarica il documento per vederlo tutto.
Thermal And Hydraulic Machine Part2 Pag. 41
1 su 143
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

Axial Pump

Used to supply water when we have little head but we want high mass flow rate

Velocity Triangle

Axial because cross section area is constant and the angle is the same

Li = 1/γ g hm

The head is few meter so the deflection (Δβ) is very low (~10°)

Presents very big diameter and few blades (4 ÷ 6) so the passage between them is big. So this type of machine are sensible when we change mass flow rate, because when we do it we will introduce an incidence.

IN DESIGN CONDITION

In off-design

Remember G = ρ A C1

To decrease G we have to decrease C1 because ρ = const, A = const

To avoid incidence axial pump has a tool able to change the angle of rotor blade it is possible because we have only few blades by using a fluid power system.

This axial pump is called

KAPLAN PUMP.

Adjust by using fluid power machine

IN THIS WAY WE WRITE

COMBINING THESE 2

EMPIRICALLY WE FIND:

COMBINING with the formula before

SO IN GENERAL WE DON’T KNOW, BUT USING THIS WE CAN FIND

TO EVALUATE THE VELOCITY AT THE EXIT OF NOZZLE (C1)

WE CAN WRITE WELL

H0 = H1 + γnozzle = H01D

A0 = z1 + p1/γ + C21D/2g + C22/2g = H01

=> H0 = H01 + C21D/2g - C2/2g

H0 CAN BE WRITTEN AS

H0 = z2 + p2/γ + C'1D'2/ + C'2-C'2'2/

=> H0 = H02 + C21D/2g - C2/2g

SO WE OBTAIN

Hu = H0 - H02 = C21D/2g - C2/2g

φ = C1/C1,1D

=> Hu = C2/2g φ2

REARRANGING

C1 = φ √ 2g Hu + C2

FOR PELTON

Hu >> C2/2g

=> C1 = φ √ 2g Hu

WHERE

Q = i A1 C1     i = NUMBER OF NOZZLE

WE CAN CHANGE THE CROSS SECTION AREA USING DOUBLE NEEDLE

[Illustration of double needle mechanism]

Ht = Hto = Hto + γ zpen + γ znozzle = CONST

z1 +P1/σ +c12/2g => C1 IS CONSTANT

P1 = Pamb

WE HAVE ALSO THAT IN REAL APPLICATION THE TURBINE IS CONNECTED WITH ELECTRICAL GENERATOR

[Diagram showing connection]

IT HAS f = 50Hz

THE RELATIONSHIP BETWEEN n AND f DEPEND ON THE NUMBER OF POLE OF GENERATOR

[Generator illustration]

P = 1 (N. OF POLES) n = f

[Generator illustration]

P = 2 n = f/2

So we must stop the machine. To do this

The only way to stop is to close G, but the head is about some hundred of meter, therefore we have a pipe of Km and we don't stop immediately the flow. We need time

t ≈ 4; 5 s

τ = 2L / a speed of sound

  • where

a ≈ 1000 m/s

L = 1 Km

τ ≈ 2 s

To obtain this we can use a deflector in front of own needle

Now we have to think of the diffuser

da2

Cm2

da3

From this we can understand that we have an equal flux

Flow Continuity Equation

Ca2 * dA2 = Ca3 dA3

Applying Angular Momentum Equation

∮ r2 Cm2 = ∮ r3 Cm3

dA2/A3

Therefore

  • From the first

Ca2 = Ca3 * A2/A3 = Ca2 * (V2/V3)2

  • From the second

Cm3 = Cm2 * V2/V3

So the kinetic energy at discharge of diffuser

C32/2 = Ca32 + Cm32/2 = 1/2 * [ Ca22 (V2/V3)4 + Cm22 (V2/V3)4 ]

=> C32/2 = 1/2 Ca22 [ (V2/V3)4 + Cm22/Ca22 ] = 1/2 Ca22 [ A2/A3 + ctn2 α2 ]

Having Ns we can compute

Low Speed Francis Turbine (LSF)

  • α1 is smaller
  • d1 = 0.04
  • β1 = 60°
  • Ns = 0.3
  • nc = 60 rpm

e1 = 0.55 / D1 = 130°

  • ωc = nc√Pm / (Hm)3/4

High Speed Francis Turbine (HSF)

  • α1 is bigger
  • d1 = 40°
  • Ns = 2.3
  • nc = 1450 rpm

In the middle we have the so called Normal Speed Francis Turbine (NSF)

It is interesting to draw the velocity triangle for these 3 kinds of speed.

Low Speed Francis Turbine

  • α1 (small)
  • ∆β = very high deflection
    • Height of the blade is important in comparison to the diameter

High Speed

  • d1 ≈ 40°
  • ∆β = very small deflection

Lezione 5/12/2013

Kaplan Turbine

Also called propeller turbine - The inlet is like Francis

As in Francis we can adjust the setting angle of down nozzle

Usually we have small number of blade (3≅5)

In propeller turbine in the past the rotor blade was fixed, but we solve this problem with Kaplan in which we can adjust rotor blade to improve the performance in off-design

We want to analyze the shape, but first of all we have to see:

  • H0 = const. (The energy doesn't change by changing elevation)
  • Hi = const. (Also at the exit of distributor
  • The angular momentum at the inlet in distributor doesn't change by changing the elevation

r0 Cm0 = const

r1' Cm1' = const

So we start to study from 1' to 1 writing:

  • Continuity equation
  • Angular momentum conserv. equation
  • Mechan. energy conserv. equation

We define own control volume:

Adjustment

Useful power is

Pm = μt ρ Q Hm         μm = ωy

Changing Q we change Hm and change also a little bit ψy because it is:

ψy = Li / gHm

Analyzing propeller, the velocity triangle

Design

But we have adjust the mass flow rate, so change the axial component

We have to assume (Hypothesis)

μ is the same

We have incidence at the inlet of rotor, but attention we have a limit because it could provides a stall

For the exit we have to assume P'2 ≅ P2

Dettagli
Publisher
A.A. 2013-2014
143 pagine
SSD Ingegneria industriale e dell'informazione ING-IND/08 Macchine a fluido

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Em4nuel3 di informazioni apprese con la frequenza delle lezioni di Thermal and Hydraulic Machines e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Torino o del prof Don Giovanni Claudio.