Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Thermal and Hydraulic Machines
Thermodynamics Review
Introduction
A fluid machine is a system that converts energy by means of a working fluid.
Machine Classification
Motor MachinesFluid energy → Shaft work (turbine)
Operating MachinesShaft work → Fluid energy (compressor)
Primary Energy Sources
- Chemical energy (combustion process)
- Hydraulic energy (head)
- Solar energy
- Wind energy
- Tidal energy
- Bio-masses (alternative source)
- Geothermal energy (hot springs)
- Nuclear energy (fission)
Renewable sources
Fluid Machines Classification
Thermal Machines- p≠const
- thermal phenomena are relevant
- p≈const
- negligible thermal phenomena
- dynamic actions (flowing fluid)
- negligible heat exchanges
- pressure actions (fixed fluid mass)
- heat exchanges
Fluid Machines
Thermal Machines Hydraulic Machines Operating Machines Operating Machines Motor Machines Motor Machines Volumetric Machines Volumetric Machines Volumetric Compressors Volumetric Compressors Internal Combustion Engines Volumetric Pumps Gas and Steam Turbines Turbopumps and Fans Turbo-compressors Hydraulic TurbinesSystem
Work interaction
Heat interaction
Mass interaction
Properties
Thermodynamic properties are the quantities whose numerical value does not depend on the history of the system, as the system evolves between two different states.
Extensive Properties
- V [m3] = V1 + V2 + V3 + V4
- V = ΣVi
- V = ∫m dV
Intensive Properties
- V1, m1
- V / m = v specific volume
- dV = v · dm elementary volume
- V = ∫m v · dm = v · m
- only for homogeneous systems
State
The state of a system is a condition of it, as described by its properties.
A system is said to be at steady state if none of its properties changes with time.
Process
When any of the properties of a system changes, its state changes and it is said to have undergone a process from an initial to a final state.
Lagrangian vs Eulerian Approach
Lagrangian Approach
- Closed system
Eulerian Approach
- Open system
dQ = dLw = -pdV + dEK + dEg + dEw + dLw
-dLw = -pdV + dEK + dEg + dEw + dLw
dQ + dLw = dh* - σdp
Motor Machines
Non reactive systems: dQ + δLw = dU + pdV
Enthalpy: h = U + pν => dh = dU + pdν + νdp
=> dQ + dLw = dh - νdp
The basis of the second law of thermodynamics is the idea that an amount of heat Q cannot be entirely converted into work.
Clausius Inequality
∮ δQ/T ≤ 0
Fully reversible process if = 0
Entropy: ds = δQ/T + δLw/T
ΔScycle = 0 ; Sf = Si => ∮ δQ/T + δLw/T = 0
δLw > 0 if irreversible process
δLw ≤ 0 if reversible process
=> ∮ δQ/T ≤ 0 c.v.d.
Tds = dQ + δLw
dQ + dLw = dU + pdν
dQ + dLw = dh - pdν
=> Tds = dU* + pdν
Tds = dh - νdp
For Perfect Gases
ds = dh/T - ν dp/T
ds = cp dT/T - RνT/p dp/T
ds = cp dT/T - R dp/p
ΔS(1,2) = cp ln(T2/T1) - R ln(p2/p1)
∮12 dQw + ∮12 dLw = ∫h1h2 dh - ∫12 vdp
Q + Lw = Δh* - ∫12 vdp
Open System
FLT: Q + Li = Δh* + ΔEK + ΔEg + ΔEw
± Lw = ∫12 vdp + ΔEK + ΔEg + ΔEw + Lw
Mechanical Energy Conservation Equation for an Open System
Δp/p + ΔEK + ΔEg = 0
Bernoulli Law
Second Law of Thermodynamics
Tds = dQ + dLw
∮12 Tds = Q + Lw
Conservation of the Mass Momentum
Ṙ = d/dt ∫cv ϱdv + ∮A c̅ · ρc̅ · n̅ dA
Open System
Ṙ = ∫A c̅ · ρc̅ · n̅ dA = ṁ (cz̅ - c̅I)
Steady State, 1D
∂/∂t ∫cv c . ϱdv = 0; ṁ = const
Velocity Triangles
C: Absolute speed
Ui: Drag/Tangential speed
W: Relative speed
C = U + W
- (1) Fluid Entering the rotor
- (2) Fluid Leaving the rotor
C2u < 0
C2 cos d2 < 0
CMu = C1 cos d1, WMu = W1 cos Beta1 Tangential Component
Coa = Uoa = C1 sin d1 = W1 sin Beta1 Meridional Component
C = U + W
- C sin d = W sin Beta
- C cos d = U + W cos Beta
Lvi = MU1 CM1 - MU2 CM2
Lvi = MU2 CM2 - MU1 CM1 Motor Machine (TURBINE)
Operating Machine
From the previous diagram we can hypothesize that:
- no = MU1 = MU2 ; CMu1 - CMu2 > 0 Motor Machine
- Lvi = n0 (CMu1 - CMu2) > 0
= no (C1 cos d1 - C2 cos d2)
= no (C1 cos d1 + [C2 cos d2]) > 0
pi = ṁ ⋅ Lw
ROTOR
only for Action Turbines
(the pressure drop in reaction turbines make partialization difficult to apply)
DISTRIBUTOR
- Leakage Losses
The Fluid itself is not lost
The leakage comes from a deviation of the fluid from the main flow.
pl= ṁ ⋅ Lw
preal = ṁ' ⋅ Lw
where ṁ' < ṁ
Efficiency
po
To
STAGE
Cz2
co
pe
O
2is
ηv = Li / Liw
Li = hoo - hio = ho - hi2 + Co2/2 - Ci2/2
Total to Static Efficiency
ηθ = (ho - hi2) / (ho - hi2is)
(Single stage machine or last stage of a multi-stage machine)
Total to Total Efficiency
ηh = (ho - hi) / (hoo - hi2is + CE2/2)
(Intermediate stage of a multi-stage machine)
ηθ < ηh