vuoi
o PayPal
tutte le volte che vuoi
1a Lim x→0 (cosx)1/x = (eln(cosx))1/x -→ e ln (cosx) / x -→ e0 = 1
2a Lim x→0 (cos2x) log(cosx) = Lim x→0 log(cosx) / sec2x = 0 / 1 = 0
cos2x log(cosx) = Lim x→0 (cos2x log(cosx))' / (x2)' -→ Lim x→0 cos2x log(cosx) / (x2) -→
(-2(cosx)-1senx) = (-4cosx + 1) secx -→ Lim x→0 cos2x log(cosx) = Lim x→0 log(cosx) x2 - 1) / x 2
Div. Cambiar Strade
- cosx = 1-t2 / 1 + t2 x = x sen = 2t / 1+t2
Lim x→0 (2t / 1 + t2) = Lim x→0 lg((1-t2)(1+t2)) / 2t(1+ t2) = Lim x→0 (((1-t2)
-2t / 1 + t2) = Lim x→0 (2t) / (1 + t2)
Lim x→0 2t / x2) = Lim x→0 -t((1 + t2), 0
Lim x→0 20 = 1
1) lim
x→0
(cosx - senx2) / (√x (e√x - 1))
=
lim
x→0
(-cosx . x2 - secx . x / x2 + x / x) / (√x (e√x - 1))
=
lim
x→0
4 (1/2 x2 - x
√x (e√x - 1)
= lim
x→0
√x (1/2 x-1)
√x (e√x - 1)
=
lim
x→0
4 (1/2 x2) - 1
√x
= lim
x→0
√x (1/2 x-1)
A . √x
-∞
lim
x→0
√x2 (1/2 (x - 1) = -∞
limx→0 x√(1 + sin x) - 1/x⋅x - 1
limx→0 1 + sin x/sen x -> limx→0 (x + sen x) - 1/sen x
limx→0 f(x) = 0
limx→0 C2 x - 6 x2 + x2 - x2
limx→0 C x⋅senx⋅x - 6 x2 - xx - x2 - x/x2 → limx→0 6x2 + x2/x2 → ∞