Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
I.R.C.C.S. Istituto Superiore di Sanità (HUB Italiano)
Coordina le attività di 23 biobanche presenti sul territorio nazionale tra cui:
¾ Definition of the gold standard protocol for the chosen biological samples:
STANDARDIZATION OF URINE ANALYSIS
Cancer Biomarker Discovery Sample Sources – Dilution of Markers with Distance from Tumor
Neoplastic Body
Sample Type
Cytology
Tissue Fluids
Biomarker Concentration
High
Medium
Low
Seminal Plasma
Serum
Biopsy
Sample(s) suitable for Nipple Aspirates
Plasma
LCM Fine Needle proteomic analysis
Urine Aspirates
Biologial samples and Kidney biomarkers
Sample type
Biomarkers amount
Biopsy specimens
High
intermediate
Urine
Low
Serum/Plasma
Urine advantages
Less complex then serum and plasma
Un-invasive recruitment in large amount
Higher presence of kidney derived molecules
STANDARDIZATION OF URINE ANALYSIS
Fresh sample or frozen one?
Time controlled collection or not?
Urine Storage at RmT: how long can it stay?
Between‐subject differences?
Can protease
Inhibitors efficiently prevent protein degradation?
CONCLUDING REMARKS
The timing of the collection can affect the proteomic profile
Urine are stable up to 2 hours at RmT after collection
Repeated freeze and thaw cycles do not alter the protein profiles
Large inter‐individual variability
J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 856 (2007) 205‐213
Papale M, Di Paolo S, Gesualdo L et Al¾ Definition of the clinical question and identification of the patients to be enrolled:
BIOMARKER DISCOVERY STUDIES FOR:
- DIAGNOSIS
- PROGNOSIS
- THERAPY MONITORING
Study Design (pre - clinical considerations)
Pre-Analytical Factors Analytical Factors
Pre-Analytical Factors Analytical Factors
- Lab technique.
- Clinical inclusion/exclusion criteria.
- Automation vs. manual protocols.
- Subject demographics (race, age).
- Fractionation protocols.
- Sample size.
- Randomization during processing.
- Sample type (EDTA plasma, Citrate plasma, serum, lysate).
- Array binding and washing
- Sample collection Protocol (time protocols for clotting, time 'on the bench', transport, aliquoting)
- Array reading protocols (Baseline subtraction, noise definition, normalisation)
- Data pre-processing
- Sample Storage (age, temperature, freeze-thaw cycles)
- Classification approaches
- Study Design (Clinical aspects)
- Two types of studies:
- Prospective study: enroll patients and examine what happens to them.
- Case-controlled (clinical trials)
- Cohort - patients self select their group
- Longitudinal
- Retrospective study: choose patients from a databank and examine what happened to them.
- Case-controlled
- Cross-sectional
- Prospective study: enroll patients and examine what happens to them.
- Identification and validation of the candidate biomarkers
THE AIMS OF A CLINICAL PROTEOMIC STUDY
Biomarker Discovery and Validation
Work plan
- Discovery phase
- Develop assay conditions
- Find candidate markers
- Develop
classification rules.
- Validation phase
- Large sample set size.
- Subset of assay conditions.
- Refine classification rules.
- Identification phase
- Identify a candidate biomarker and validate its association with the condition you are studying by alternative approaches
PROTEOMICA CLINICA: LA NOSTRA ESPERIENZA
- INDIVIDUAZIONE DI NUOVI BIOMARCATORI DI URINARI DI CARCINOMA RENALE (RC)
- DIAGNOSI DIFFERENZIALE DELLA NEFROPATIA DIABETICA
- FARMACO-PROTEOMICA DELLA NEFROPATIA DI BERGER (IgAN)
Cross-comparison between tissue and urine proteomics allowed to identify RCC-specific urinary biomarkers
Massimo Papale, Margherita Gigante, Clelia Prattichizzo, Maria Teresa Rocchetti, Grazia Vocino, Michele Battaglia, Loreto Gesualdo and Elena Ranieri
Renal Cell Carcinoma (RCC)
Most common solid tumor of the kidney that accounts about 3% of all adult malignancies
Histological Classification (Mainz):
RCC: anatomy and histological characteristics
RCCDiagnosis
Therapy
Complete Blood Count (CBC)
Ultrasound examination
CT with contrast
NMR Radicalnephrectomy
Skeletal scintigraphy
Urography
Arteriography
Urinalysis
Identification of RCC Biomarkers: a current challenge
AIMS OF THE STUDY
- To identify the best sample for biomarkers validation
- To validate the specificity of the identified biomarkers for RCC
Clinical features
HS RCC | Non-RCC | ||
---|---|---|---|
N. 21 | N.22 | ||
Sex (M/F) | 15/6 | 13/9 | 8/3 |
Age | 54 | 63 | 67 |
(median) | |||
Grading | 1 ( 9% ) | 1 (18%) | |
2 (54%) | 2 (54%) | ||
3 (37%) | 3 (28%) | ||
TNM | T N0/MX | T N0/MX | |
n n(100%) | n n(100%) |
EXPERIMENTAL DESIGN
SERUM PROFILING
URINE PROFILING
CONFIRMATION
RCC (early stage) | RCC (early stage) |
---|---|
15 serum samples | 22 pre-operative urine samples |
Healthy Subjects | Healthy Subjects |
15 serum samples | 21 urine samples |
DISCOVERY
TISSUE IMAGING
TISSUE PROFILING
LOCALIZATION
RCC (early stage) | RCC (early stage) |
---|---|
10 RCC | Unaffected kidney |
Vs. | Vs. |
10 non-RCC | PHASE I |
SELDI PROFILING ON URINE, TISSUES AND SERA
5000
7500
10000
12500
20 Node
Class = DN15 C08586_0 <= 19.726
Class Cases %DN 31 43.110 Other CKD 41 56.9
W = 72.000
N = 725 C08586_0 <= 19.726 C08586_0 > 19.726
Terminal Node 2
Node 1 Class = DN
Class = Other CKD C013593_ <= 3.010
Class Cases % Class Cases %30 DN 0 0.0 DN 31 60.8
Other CKD 21 100.0 Other CKD 20 39.2
W = 21.000 W = 51.000
N = 21 N = 51
20 C013593_ <= 3.010 C013593_ > 3.010
10 Node 3 Terminal
Class = Other CKD Node 4
C03086_1 <= 1.605 Class = DN
Class Cases % Class Cases %0 DN 1 6.7 DN 30 83.3
Other CKD 14 93.3 Other CKD 6 16.7
W = 15.000 W = 36.000
N = 15 N = 36
10 C03086_1 <= 1.605 C03086_1 > 1.605
Terminal Terminal
Node 2 Node 3
Class = DN Class = Other CKD
5 Class Cases % Class Cases %
DN 1 100.0 DN 0 0.0
Other CKD 0 0.0 Other CKD 14 100.0
W = 1.000 W = 14.000
N = 1 N = 14
0 5000 7500 10000 12500
SAMPLE PREPARATION AND MULTIVARIATE ANALYSIS
DATA ACQUISITION
ANALYSIS ®(BPS )
RCC Vs. Healthy Subjects (URINE)
SELDI MASS SPECTRA
5000 7500 10000 12500
20uA 15 RCC
INTENSITY 503020 HS100 MASS m/z
(Da)Fifty-seven mass peaks resulted differentially excreted (p-value < 0.05) between RCC and healthy subjects (mass range: 3000 e 30000 Da)
Classification and Regression Tree (CART) Analysis
Node 1
Class = RCC M0_MxC04128_0 <= 14.796
Class Cases %
METHODCTRL 12 46.2
RCC M0_Mx 14 53.8
W = 26.000
N = 26
SELDI dataset analysis by multivariate classification software may provide rapid, simplified pattern analysis for discovery of multiple biomarkers
C04128_0 <= 14.796 C04128_0 > 14.796
Terminal Node 2
Node 1 Class = RCC M0_Mx
Class = CTRL C03736_9 <= 4.991
Class Cases % Class Cases %
CTRL 11 91.7 CTRL 1 7.1
Basic principle of CART (Classification and Regression Trees) analysis
RCC M0_Mx 1 8.3 RCC M0_Mx 13 92.9
W = 12.000 W = 14.000
N = 12 N = 14
peak intensity values are used to define a single splitting rule that best•
SELDI C03736_9 <= 4.991 C03736_9 > 4.991
segregates the training set by phenotype. Terminal Terminal
Node 2 Node 3
tree describing the best
- The Class = CTRL
- Class Cases %
- CTRL 1 100.0
- CTRL 0 0.0
- Class = RCC M0_Mx
- Class Cases %
- RCC M0_Mx 0 0.0
- RCC M0_Mx 13 100.0
- W = 1.000
- W = 13.000
- N = 1
- N = 13
ARE THERE COMPARABLE REDUCED OR INCREASED RCC MARKERS IN KIDNEY AND URINE?
RCC Vs "normal" tissue RCC Vs HS urine
Differentially expressed mass peaks
Common markers (confident RCC biomarkers)
Differently expressed urine biomarkers in tissue profiling
3600 | 3700 | 3800 | 3900 | 8500 | 8750 | 9000 | 9250 | 8500 | 8750 | 9000 | 9250 |
500 | 200 | 400 | 150 | 300 | 100 | 200 | 50 | 100 | 0 | 500 | 200 |
400 | 150 | 300 | 200 | 100 | 500 | 0 | 500 | 200 | 300 | 150 | 200 |
100 | 500 | 0 | 400 | 200 | 300 | 150 | 200 | 100 | 100 | 500 | 0 |
500 | 200 | 300 | 150 | 200 | 100 | 100 | 500 | 0 | 400 | 200 | 300 |
150 | 200 | 100 | 100 | 500 | 0 | 400 | 200 | 300 | 150 | 200 | 100 |
100 | 500 | 0 | 400 | 200 | 300 | 150 | 200 | 100 | 100 | 500 | 0 |
3600 | 3700 | 3800 | 3900 | 8500 | 8750 | 9000 | 9250 | 8500 | 8750 | 9000 | 9250 |
3600
3700
3800
3900
8500
8750
9000
9250
8500
8750
9000
9250
3600
3700
3800
3900
500
200
400
150
300
100
200
50
100
0
500
200
400
150
300
100
200
50
100
0
500
200
300
150
200
100
500
0
500
200
300
150
200
100
100
500
0
400
200
300
150
200
100
100
500
0
400
200
300
150
200
100
100
500
0
3600
3700
3800
3900
8500
8750
9000
9250
8500
8750
9000
9250
3800 3900 3600 3800 8500 9000 8500 9000 3600 3800 12580 10060 uA 75uA 40 50 2520 0080 12510060 uA 75uA 40 50 HS20 25 Urine 0080 12510060 uA 75uA 40 50 20 2500 8012510060 uA 75uA 40 50 20 2500 8012560 100uA 75uA 40 50 20 2500 8012560 100uA uA 75uA 40 50 RCC250 080 12560 100uA uA 75uA 40 50 20 2500 8012560 100uA uA 75uA 40 50 3600 3800 3600 3800 8500 9000 8500 9000 3736 m/z 8755 m/z ANDAMENTO DEL PICCO DI 3736 m/z nelle urine e nei tessuti RCC URINE TESSUTO CTRL RCC Tex CTRL Tex RCC CART analysis Classification Tree for RCC and HS (URINE) Node 1 Class = RCC M0_MxC08755_0 <= 9.139 Class Cases %CTRL 12 46.2 RCC M0_Mx 14 53.8 W = 26.000 N = 26 1.0 C08755_0 <= 9.139 C08755_0 > 9.139 0.8 Node 2 Node 3 Class = CTRL Class = RCC M0_MxC03736_9 <= 25.320 C03736_9 <= 7.575 Sensitivity Class Cases % Class Cases % 0.6 CTRL 10 76.9 CTRL 2 15.4 RCC M0_Mx 3 23.1 RCC M0_Mx 11 84.6 W = 13.000 W = 13.000 0.4 N = 13 N = 13 ROC Integral 0.764 C03736_9 <= 25.320 C03736_9 > 25.320 C03736_9 <= 7.575 C03736_9 >
7.575 0.2
Terminal Terminal Terminal Terminal
Node 1 Node 2 Node 3 Node 4
0.0
Class = CTRL Cl