Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
I DISEGNI SPERIMENTALI
Vengono chiamati così perché ci sono dei protocolli da applicare. Possono essere suddivisi in 3 grandicategorie:
- SPERIMENTAZIONE CON GRUPPO SPERIMENTALE E GRUPPO DI CONTROLLO EQUIVALENTI (SPERIMENTALE CLASSICO= con maggiore validità): Su entrambi i gruppi vengono effettuate le stesse misure in ingresso che consentono di verificare, da un lato, la correttezza della composizione dei gruppi, dall'altro, l'effetto del trattamento. Lo stimolo viene somministrato solo ad uno dei gruppi, quello definito, appunto, sperimentale. Successivamente entrambi i gruppi vengono sottoposti alle stesse misure in uscita. Il risultato del pre-test sui due gruppi offre una misura dell'effettiva confrontabilità dei gruppi, il risultato del post-test ci fornisce la misura dell'effetto del trattamento sul gruppo sperimentale.
- SPERIMENTAZIONE CON ROTAZIONE DI DUE IDENTICI FATTORI SU DUE GRUPPI NON in questo caso si può ricorrere alla
3. SPERIMENTAZIONE CON SINGOLI GRUPPI:
4. Qualora si volessero mantenere i vantaggi dei due disegni SPERIMENTAZIONE CON PIÙ GRUPPI: precedenti ed eliminare i rischi di errore, si potrebbe procedere con un modello a quattro gruppi di cui due sottoposti a pre-test e due senza pre-test in ingresso. Tuttavia, uno dei gruppi di controllo, non sottoposto a pre-test, viene sottoposto a trattamento. I dati che si possono ricavare da questo modello, noto come disegno di Solomon a quattro gruppi, permettono di controllare la composizione dei gruppi e la maturazione attraverso il confronto tra gruppo A e gruppo B e l'effetto delle misure in ingresso attraverso il confronto.
Incrociato tra i gruppi A e C e B e D. I disegni quasi - sperimentali (o non disegni). Nei quasi - esperimenti chi conduce la ricerca non ha un controllo completo di tutte le variabili. Non è possibile assegnare casualmente i soggetti alle varie condizioni sperimentali, ma solo selezionarli in base a raggruppamenti già esistenti. La ricerca avviene, quindi, dopo che i gruppi si sono formati in base a dei criteri che non è stato il ricercatore a decidere.
I più frequenti sono:
- Si tratta di un disegno con un solo gruppo, in cui si rileva la variabile dipendente più volte sia prima che dopo il trattamento. Lo scopo delle rilevazioni ripetute è quello di aumentare la validità interna del disegno. La tendenza dei dati prima del trattamento viene definita e utilizzata come punto di paragone fisso linea base con cui confrontare i dati dopo il trattamento.
- Prevede che i
DISEGNI QUASI SPERIMENTALI A SERIE TEMPORALI INTERROTTE:
Solo gruppo, in cui si rileva la variabile dipendente più volte sia prima che dopo il trattamento. Lo scopo delle rilevazioni ripetute è quello di aumentare la validità interna del disegno. La tendenza dei dati prima del trattamento viene definita e utilizzata come punto di paragone fisso linea base con cui confrontare i dati dopo il trattamento.
SPERIMENTALI CON CAMPIONI TEMPORALI NON EQUIVALENTI: soggetti non siano assegnati ai gruppi in modo casuale; questo tipo di disegni sono utili quando i gruppi rappresentano "entità naturali", cioè gruppi che devono essere mantenuti intatti per conservare le proprie caratteristiche (ad es. le classi scolastiche). I gruppi quindi, non sono equivalenti e il confronto fra i risultati dei due gruppi non viene effettuato fra gli esiti dei due post-test ma fra le differenze fra pre-test e post-test.
Le prestazioni di due gruppi sono misurate prima e dopo il trattamento, ma il trattamento viene assegnato solo al gruppo sperimentale.
Esempio: i due gruppi sono composti da ragazzi di due diverse classi. L'obiettivo è verificare se una nuova tecnica di lettura migliora l'apprendimento. Tuttavia non si ha la garanzia che il livello educativo delle due classi sia omogeneo. Il problema sta nel confronto dei risultati del gruppo sperimentale e di controllo.
L'interpretabilità dei risultati richiede un'accurata analisi delle prestazioni dei gruppi. I disegni pre-sperimentali. Spesso sono gli unici utilizzabili in campo educativo. Quelli più utilizzati sono:
- DISEGNO A GRUPPO UNICO: presenta un solo gruppo sperimentale. Viene fatto in tutte le situazioni educative. Ad esempio, si potrebbe sottoporre una sola classe ad un nuovo metodo per aumentare la velocità di lettura negli alunni.
- DISEGNO A GRUPPO UNICO CON PRE-TEST: Si confrontano i risultati delle due osservazioni.
- DISEGNO CON GRUPPI NON EQUIVALENTI: sono presenti due gruppi, uno sperimentale e uno di controllo. In questo disegno, un gruppo di soggetti viene sottoposto al trattamento mentre l'altro no. Vi è soltanto il post-test.
CAPITOLO 3 - IL CAMPIONAMENTO
In una ricerca quasi sempre, è difficile se non impossibile coinvolgere tutta una popolazione. Aumentando il numero della popolazione, aumenta la significazione del campione.
C'è bisogno quindi, di circoscrivere l'indagine ad una parte della popolazione, attraverso opportune tecniche è possibile selezionare alcuni soggetti che siano rappresentativi dell'insieme che stiamo considerando. Il campione è un gruppo di soggetti che deve avere caratteristiche. Caratteristica del campione è quella di rappresentare le caratteristiche della popolazione ed è per questo che lo definiamo "rappresentativo"; ciò ci permette di generalizzare i dati dell'intera popolazione. Se vogliamo usare i nostri dati per generalizzare ad un universo i valori ottenuti, entriamo nel campo dell'"INFERENZA STATISTICA" (riguarda il pervenire a caratteristiche generalizzate), cioè stiamo usando il nostro insieme come parte che rispecchia tutte le caratteristiche dell'universo al quale appartiene. La STATISTICA INFERENZIALE si propone di: - Stimare parametri di una popolazione a partire da uncampione• Validità interna, ovvero intrinseca alla ricerca che stiamo facendo. Quando lavoriamo con dei dati raccolti su un campione, corriamo il serio rischio di sbagliare. Infatti, i risultati del campione sono probabilità. Se il campionamento viene compiuto correttamente e con metodi adeguati possiamo avere forti speranze che la popolazione campionaria sarà circa uguale alla corrispondente proporzione della popolazione. Più è ampio il campione, più probabilità vi sono che esso sia rappresentativo della statistica.
popolazione popolazione s’intende un insieme definito di termini chiari, in modo che risulti evidente chi ad esso appartiene e chi ne è escluso. Quindi definiamo “popolazione” l’insieme finito o infinitamente ampio di tutti gli elementi o membri che presentano le stesse caratteristiche. L’ampiezza del campione è variabile. Una popolazione può essere finita se si possono
enumerare gli elementi che la compongono; qualora non fossero numerabili la popolazione viene detta indefinita o anche universo. La STATISTICA ci fornisce la metodologia e la tecnica per scegliere i campioni, cercando di ridurre al minimo i rischi, fornendoci anche la "quantità" di rischio che corriamo e, suggerendoci possibilità di correttivi che tendono a correggere i possibili errori. Ci sono quattro tipi di campionamento: - scelta casuale ci rende più sicuri che il campione non è stato selezionato da "preferenze". Ad esempio, se somministriamo una prova di ingresso di matematica agli alunni delle prime classiche volontariamente si sono offerti, oppure ad un gruppo di alunni (sempre dello stesso istituito) che sono stati scelti a caso: nel primo caso, i "volontari" potrebbero formare un campione distorto in quanto potrebbero essere i più bravi che vogliono mettersi in mostra agli occhi degli altri.insegnanti; nel secondo caso, invece, una scelta casuale ci renderebbe più sicuri sul fatto che la scelta non è stata influenzata.- = si chiama casuale semplice, non perché scelto a caso CAMPIONAMENTO CASUALE SEMPLICE ma perché ogni individuo della popolazione ha uguali possibilità di essere scelto. Ad esempio, se da una popolazione di 100 soggetti dovessimo estrarne un campione di 10, risulta evidente che il primo ad essere estratto ha una probabilità su 100, mentre il 10 ha una probabilità su 91.- si sorteggia il primo numero e poi si segue una logica (dopo il primo, ogni 10). Questo tipo di campionamento si presenta più semplice di quello precedente per scegliere campioni ampi, sempre che si possiedano elenchi completi della popolazione interessata.
- si suddivide prima la popolazione in classi e poi in ciascuna classe si sceglie un campione casuale semplice.
Il campionamento stratificato può essere "proporzionale" e "non proporzionale": è dato dalla stessa proporzione di soggetti estratti in ogni classe. Ad esempio, se su 1000 studenti che si iscrivono ad una facoltà universitaria ve ne sono 500 che provengono da licei scientifici, 350 che provengono dai licei classici e 150 da istituti tecnici, un campione stratificato "proporzionale" deve mantenere queste proporzioni, 50% 35% 15%. Il campione può avere un numero di soggetti estratti uguali per ogni classe. "Non proporzionale" si divide la popolazione in classi e poi si fa un campione di queste. Si estraggono direttamente i gruppi. Ad esempio, possiamo dividere la popolazione studentesca di 3 media di un istituto scolastico in tante classi di terza. Questo tipo viene chiamato campionamento a grappolo. In caso di gruppi molto grandi, si può, dopo aver estratto i
grappolo ad uno stadio.gruppi, all'interno di ciascuno di essi estrarre un campione casuale semplice: questo tipo viene chiamato campione a grappoli a due stadi.Vantaggi del campionamento: Riduzione dei costi Rapidità Scopi specifici Accuratezza
CAPITOLO 4- L'OSSERVAZIONE
Osservare un fenomeno o un comportamento non significa semplicemente vederlo e percepirlo sensorialmente, ma descriverlo nel modo più fedele possibile per poterlo comprendere e possederlo. Osservare quindi significa prestare attenzione ad un particolare evento o oggetto e raccogliere informazioni su di esso. I dati raccolti poi vengono codificati attraverso specifici sistemi di codifica che possono essere suddivisi in due grandi gruppi:
- SISTEMI DI SELEZIONE: prevedono che l'informazione rilevata venga codificata in base ad un sistema o ad una griglia costruita a priori
- SISTEMI DI PRODUZIONE: l'osservatore