Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
K L K L
un’equazione caratteristica:
:8 = G + :oQ[[Q.
&
Ipotizzando di mantenere fissi il capitale fisico, possiamo riscrivere l’espressione dei costi totali
^
K L
come:
E’ possibile analizzare quindi la sola produttività marginale del lavoro. > 0,
;J
;K
Dal grafico è possibile notare due proprietà fondamentali di tale funzione: ossia
> 0
; J
;K
all’aumentare del lavoro aumenta la quantità prodotta; e fino all’equilibrio di lungo
< 0
; J
;K una volta superato l’equilibrio di lungo periodo, ossia la concavità della
periodo, mentre
curva cambia in un punto di flesso definito dal lungo periodo.
Successivamente procediamo ad analizzare la funzione dei costi totali.
Com’è facilmente verificabile anche dal grafico, la funzione non passa dall’origine per via della
presenza dei costi fissi di produzione.
l: = = + = l:n + l:o.
Infine procediamo all’analisi dei costi medi per unità prodotta, che nel breve periodo è possibile
?m ?q ?r
J J J
esprimere come:
Possiamo quindi affermare che esiste un livello di produzione ottimale dal punto di vista dei costi
che coincide con il punto di equilibrio nel lungo periodo. Quindi la minimizzazione dei costi nel
breve periodo coincide con la minimizzazione dei costi nel lungo periodo, ma non sempre nel
U:8
breve periodo è possibile minimizzare. E’ utile dunque introdurre una nuova tipologia di costo,
P: = UG .
detto costo marginale: Tale valore indica la variazione di costo totale legato ad una
variazione unitaria della produzione. Riesce quindi correttamente ad indicare se all’impresa
convenga produrre di più o di meno.
Pls D = ̅ G − :8 G
Volendo ricercare ora il massimo guadagno raggiungibile nel breve periodo, è possibile instaurare
D ̅ ̅ G :8 G
la relazione: .
indica il profitto, indica il valore prefissato dei prezzi, indica il ricavo di vendita,
indica il valore economico degli input utilizzati.
E’ quindi opportuno andare a ricercare il prezzo minimo per il quale conviene stare sul mercato nel
lungo periodo.
Dal grafico si può intuire come tale prezzo debba essere superiore ai costi medi per poter garantire
=0= ̅− P: = ̅
;E ;?m
un profitto. La quantità ottima di produzione nel breve periodo risulta quindi essere:
;J ;J
Dal grafico è possibile estrarre altre informazioni utili. Inizialmente la curva del costo medio
variabile (ACV) può avere un’inclinazione negativa, anche se non necessariamente. Tuttavia, per la
presenza di fattori fissi che vincolano la produzione, a partire da un certo punto la curva inizierà a
crescere. La curva di costo medio fisso (ACF) diminuisce all’aumentare della quantità prodotta. La
curva di costo medio (AC) inizialmente diminuisce perché diminuiscono i costi fissi, ma poi inizia a
crescere a causa dei crescenti costi medi variabili. La curva di costo marginale (MC) passa per il
punto minimo delle curve di costo medio variabile e di costo medio. Per la prima unità prodotta
avremo AVC=MC. L’area al di sotto della curva di costo marginale rappresenta i costi variabili di
produzione in corrispondenza dei diversi livelli di output.
Possiamo quindi concludere la nostra riflessione stabilendo che la curva di offerta di un’impresa
concorrenziale coinciderà con la curva di costo marginale.
Partiamo dunque da qui per analizzare le scelte di un’impresa. Fissato un prezzo di vendita, com’è
possibile stabilire se all’impresa convenga produrre? E fissato un prezzo di vendita, com’è possibile
stabilire quanto produrre? Esiste una fascia di costi per cui convenga non produrre? Sicuramente
quanto il prezzo è troppo basso per coprire i costi, l’impresa non produce. Questo succede quando
l: G > G D < 0. G = 0 D = :o.
il prezzo di vendita è posto tra la curva dei costi medi totali e il minimo dei costi medi variabili: se
, allora Ma se ponessi comunque avrei Possiamo quindi
= .
G *
affermare che se i costi medi sono maggiori del ricavo unitario, l’impresa è in perdita. La curva di
offerta nel breve periodo è un legame tra la quantità offerta e il prezzo imposto :
D = −:o + ̅ G − :n ̅ G − :n > 0
E’ quindi possibile affermare che un’impresa decide di produrre solo se i ricavi crescono più dei
.
costi: Ad ogni modo, se conviene comunque
produrre, perché anche se continuiamo ad avere delle perdite complessive, esse saranno inferiori
G > 0 ≥ v9wln:
a quelle che avremmo senza produrre. In definitiva possiamo concludere che avremo produzione
se .
Ma quanto produco in base al prezzo fissato? Il massimo profitto si ha quando il prezzo di vendita
corrisponde con il costo marginale. Dallo studio grafico possiamo suddividere la produzione Q in
< v9wln::
tre fasi: G = 0.
1) l’impresa produce in perdita e non copre né i costi fissi né i costi variabili, perciò
< < v9wl::
esce dal mercato. G = P:.
2)v9wln: l’impresa produce in perdita ma riesce a coprire i costi variabili e quindi
> v9wl:: G = P:.
può momentaneamente restare nel mercato. v9wln:
3) l’impresa realizza un profitto.
Possiamo quindi affermare che la produzione sarà nulla fino a e successivamente
coinciderà con la curva di costo marginale.
poiché il prezzo è uguale al costo marginale in corrispondenza
FUNZIONE DI OFFERTA INVERSA:
della curva di offerta con produzione non nulla, il prezzo di mercato rappresenta il costo marginale
per ogni impresa che opera nel settore. Quindi tutte le imprese che massimizzano il profitto
devono avere lo stesso costo marginale, indipendentemente dalla quantità di output che
producono.
Possiamo quindi procedere a calcolare a quanto ammontano i profitti. Esistono due modi per
rappresentare i ricavi dato un prezzo:
ol88x l8y = G :y[8Q = l: G G
1) La prima modalità procede al calcolo del fatturato e dei costi attraverso la curva di offerta.
z z z z
; PROFITTI=FATTURATO-COSTI. Similarmente è
possibile ottenere lo stesso risultato considerando la sola area al di sopra della curva MC. E’ poi
possibile combinare i due metodi utilizzando il primo finché i costi marginali non eguagliano i costi
medi variabili, e successivamente utilizzare il secondo. Il valore risultante coincide quindi con
l’area a sinistra della curva di offerta.
2) La seconda modalità è legata ad una
rappresentazione alternativa dei costi
totali. Il grafico rappresenta la retta del
fatturato e la curva dei costi totali. La
distanza verticale tra le due curve
rappresenta quindi il livello dei profitti e
delle perdite. Esiste perciò un punto in cui
la distanza tra il fatturato e i costi è
massima. Il massimo profitto si verifica
appunto nel punto in cui la pendenza di RT
(che corrisponde al prezzo p) è parallela a
quella della curva CT (che corrisponde al
D ↔ = P:
costo marginale MC). Si ha quindi
{| .
I nostri costi totali includono tutta la remunerazione dei fattori produttivi (anche i fattori a titolo
gratuito, che però portano un beneficio economico).
Nei costi totali vengono inclusi i costi opportunità, che rappresentano di per sé una remunerazione
per l’imprenditore. Gli utili ottenuti sono quindi considerati un extra-profitto.
CONCORRENZA PERFETTA
Andiamo ora ad analizzare, nella nostra trattazione, le situazioni o forme di mercato in cui è
possibile applicare la curva di offerta precedentemente determinata a partire da un dato prezzo di
mercato. Per fare ciò è necessario andare ad esaminare le varie circostanze che impattano nella
determinazione dei prezzi.
La prima forma di mercato che analizzeremo è quella della concorrenza perfetta. Tanto più
un’impresa è in concorrenza perfetta con le altre, tanto più non potrà imporre il prezzo che vuole.
Abbiamo un regime di concorrenza perfetta sotto le seguenti ipotesi:
-presenza di tante imprese, ognuna delle quali avente una quota infinitesima di mercato. In questo
modo le scelte di un’impresa non influenzeranno direttamente l’intero mercato;
-presenza di beni omogenei, ossia uguali per ogni impresa. In questo modo il bene venduto
dall’impresa i risulta essere un perfetto sostituto del bene venduto dall’impresa j. Questa è
un’ipotesi forte, ma valida per alcuni beni come la benzina. Il prezzo è quindi fissato dalla
concorrenza, cioè o vendo a quel prezzo o non vendo. In ambito di concorrenza perfetta le
imprese vengono appunto dette price-takers;
-presenza di perfetta informazione. Questa affermazione è implicata dalla precedente ipotesi.
Infatti stabilisce che tutti i consumatori e tutte le imprese siano a conoscenza dei prezzi di tutti. In
questo modo i consumatori sono liberi di comprare laddove la convenienza è maggiore;
-assenza di barriere all’entrata o all’uscita dal mercato. Si suppone quindi che non siano richieste
particolari licenze, che la tecnologia sia nota e che sia possibile recuperare i costi fissi iniziali
uscendo dal mercato.
Partendo quindi dalla curva di offerta di una delle imprese concorrenti, è possibile graficare le
curve di domanda e offerta dell’intero mercato:
La curva di offerta di un mercato concorrenziale è la somma delle curve di costo marginale di tutte
le imprese che sono sul mercato.
z
G = G
Il prezzo di equilibrio è dunque il prezzo per il quale la domanda e l’offerta coincidono:
~ • . Nel punto di equilibrio dunque non vi sono eccessi che spingono il mercato a modificare
il prezzo. Se si partisse infatti da un prezzo più alto , le imprese produrrebbero di più ma lo
domanda si abbasserebbe. Vi sarebbero quindi delle quantità invendute e saremmo in presenza di
un eccesso di offerta. Questo sarebbe un chiaro messaggio all’impresa di abbassare il prezzo,
soprattutto per beni altamente deperibili o con alti costi di stoccaggio. Se invece si partisse da un
prezzo più basso , le imprese produrrebbero di meno ma saremmo in presenza di tanti
potenziali consumatori. Sul mercato non si troverebbe quindi ciò che si vuole comprare, e
saremmo in presenza di un eccesso di domanda. Dato che chi compra è disposto a pagare di più
z
per ottenere quel bene, le imprese hanno la possibilità di alzare il prezzo di vendita fino a . Sia
nell’uno che nell’altro caso il prezzo quindi sale e scende per poi tornare nel suo punto di
equilibrio.
La concorrenza perfetta è una forma di mercato in cui il prezzo di vendita dei beni dipende
esclusivamente dall’incontro