Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Coordinate dei punti simmetrici rispetto all'origine O
Oπ + α′P′PP sono due punti simmetrici rispetto all'origine O, le cui coordinate sono:
(x, y) = (π - α, π + αα)
Per quanto detto in precedenza sulle simmetrie:
(π + α) = -αcos(θ)
(π + α) = -αsen(θ)
Pertanto, le coordinate di P saranno:
(x, y) = (-α, -α′P cos(θ), -α′P sen(θ))
Sostituendo alla tangente avremo:
(π + α) = αtg(θ)
Esempi:
Esercizio riguardante archi che differiscono di mezzo giro:
(α, π + α + α) = (α - α + α - α) = sin(θ) cos(θ) 1
α + α + =2
2sin cos 1= − + =1
1 0Esercizio riguardante archi che differiscono di mezzo giro:( )π + αcos1 +( ) ( )+ π + α − π + α21 cos 1 cos− α1 cos= + =− α − α21 cos 1 cos+ α − α1 1 1cos cos= = =− α − α α2 2 21 cos 1 cos sinEsercizio riguardante archi che differiscono di mezzo giro:( )α − π + αsin sin2 ( )α − π + αcos cos2 ( )α α− −sin sin2= =( )α α− −cos cos2α α α+ 3sin sin sin2 α= = = tgα α α+cos 2 cos 3 cosANGOLI ESPLEMENTARI ( )2πDue angoli si dicono esplementari quando la loro somma dà un angolo giroAppunti a cura di Roberto Bringheli e Carmelo Zucco easy matematica di Adolfo ScimonePagina 10 di 15Pπ − α2 α ′P′PP e sono due punti opposti (simmetrici rispetto all’asse
x) le cui coordinate sono:[ ]( ) ( )( ) π − α π − αα α ′P cos 2 ;sen 2P cos ;sene per quanto detto in precedenza sulle simmetrie avremo:( )α − α′P cos ; sensostituendo alla tangente avremo:( )π α− α−sen 2 sen( )π α α− = = = −tg 2 tg( )π α α−cos 2 cosdunque:( )π α α− = −tg 2 tgEsempi riguardanti angoli esplementari:Esercizio n° 1− − − + − −π α π α α αsin ( 2 ) 2 cos( 2 ) cos cos( )= − − + − =α α α αsin 2 cos cos cos= − −α αsin 2 cosEsercizio n° 2 2 ( )π α π α α− + + − −tg(2 ) 2sin(2 ) tgcπ α−cos(2 )2 ( )α α α= − + + − =tg 2sin tgcαcosα α sin 2 cosα=− + + −
= 2sinα α α cos cos sinαsin 2 α=− + − =1cosα αcos cosα α− + − 2sin 2 2 cos= =αcos( )α α− + − 2 α α− +sin 2 1 cos 2sin 2sin= =α αcos cos
Esercizio n° 3
Appunti a cura di Roberto Bringheli e Carmelo Zucco easy matematica di Adolfo Scimone
Pagina 11 di 15
π − α + π + αsin ( 2 ) cos( 2 )( )− α + π − αcos sin ( )− α − αsin cos= =α + αcos sin( )α α− +cos sin= = −1α α+cos sin
ARCHI OPPOSTI α − α
Due archi si dicono opposti quando i due angoli formati hanno ampiezza ey Pα− α xO ′P′PP e sono due punti (simmetrici rispetto all’asse x) le cui ordinate sono:( ) ( )α − αα α ′P cos ; senP cos ;sen
dunque per quanto detto in precedenza sulle
simmetrie avremo: (α) = αcos(θ) cos(α) - αsin(θ) sin(α) sostituendo alla tangente avremo: α = -tg(θ)tg(α) - cos(θ)cos(α) dunque: (α) = -tg(θ)tg(α) Esempi Esercizio riguardante angoli opposti: (α) = sin(θ)cos(α) - 2sin(θ)cos(3α) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)cos(α) + sin(2α)cos(θ) (α) = sin(θ)ARCHI COMPLEMENTARI
Due archi si dicono complementari quando la somma dei due angoli formati è un angolo retto.
′P PO′PP e sono due punti(simmetrici rispetto alla bisettrice del 1° e 3° quadrante) le cui coordinate sono: π π ( ) α α− −α α ′ P cos ;senP cos ;sen 2 2dunque per quanto detto in precedenza sulle simmetrie avremo:π =− α α cos sen 2π − =α α sen sen 2sostituendo alla tangente avremo:Appunti a cura di Roberto Bringheli e Carmelo Zucco easy matematica di Adolfo ScimonePagina 13 di 15π α− senπ α cos2α α− = = = tg c tgπ α
2 senα−2cos2dunque:πα α− =αtg c tg2Esempi πEsercizio riguardante archi complementari, opposti e che differiscono di :πα + − α + − α − π + αsin cos 3 cos( ) sin ( )= α + α + α + α =sin sin 3 cos sin= α + α = α + α3sin 3 cos 3( sin cos ) πEsercizio riguardante archi complementari, opposti e che differiscono di :π π π( )− − + − −α α α π α 2cos sin tg sin2= + ⋅ =α α α α2cossin ctg sinαcos= + ⋅ =α α α2cossin sinαsin= α α2 sin cos πEsercizio riguardante archi complementari, opposti e che differiscono di :π π + α π sin ( )α α − + −α− Tg tg ctg −π αcos( )2 2− αsin= ⋅ − + =α α αctg tg tg− αcosα α α αcos sin sin sin= ⋅ − + =α α α αcos cos cossin α αsin sin= − + =1 1α αcos cos
ARCHI CHE DIFFERISCONO DI UN ANGOLO RETTO
Appunti a cura di Roberto Bringheli e Carmelo Zucco easy matematica di Adolfo Scimone
Pagina 14 di 15
y′P Qπ + α2 Pα x′ ′P P
Per ottenere le coordinate di bisogna effettuare 2 passaggi, passare da P a Q e da Q a .
Q e P sono due punti (simmetrici rispetto alla bisettrice del 1° e 3° quadrante) le cui( ) ( )α α α αP cos ;sen Q sen ;cos per quanto detto in precedenzacoordinate sono
sulle simmetrie:
π π + α + α′ P cos ;sen 2 2dunque per quanto detto in precedenza sulle
simmetrie avremo: π = −+ α αcos sen 2π + =α α sen cos 2sostituendo alla tangente avremoπ α+ senπ α cos2α α+ = = = −