Anteprima
Vedrai una selezione di 2 pagine su 8
Hyperbolic Problems Pag. 1 Hyperbolic Problems Pag. 2
1 su 8
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

Numerical Methods for Differential Eqns

Hyperbolic PDEs

Totally different nature with respect to others

Let's start our analysis from conservation laws:

\(\frac{\partial}{\partial t} \int_{\Omega} u \, d\Omega + \oint_{\partial \Omega} f(u) \, ds = 0\)

In general could be \(f(u) = a(u)\)

  • \(\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} (a(u)) = 0\) (Non conservative form)
  • If \(a(u) = \text{const.} \Rightarrow \frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0\)
  • If \(f(u) = \frac{1}{2} u^2\) → Burgers
  • \(\frac{\partial u}{\partial t} + \frac{\partial}{\partial x}(\frac{1}{2} u^2) = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0\)
  • Total derivative is zero!
  • \(x(t) - x_0 = a(u) t \Rightarrow x(t) = x_0 + a(u) t\)

\(\int_{x_0}^{x} \frac{1}{a(u)} dx = t\) → Characteristic lines

\(u(x,0) = u_0(x)\) → unbounded, i.e., \(u(x,0) = u_0(x)\)

\(u(x,t) = u_0(x - at) \)

Periodic b.c.: trace back to the foot

Generic (non-periodic) b.c.: only on inflow

Inflow is where \(a \cdot \hat{n} < 0\)

Exist \(\Gamma\) such that \( A = \Gamma \Lambda \Gamma^{-1} \)

Where \(\Lambda\) is a diagonal matrix containing all eigenvalues of \(A\), eigenvalues being real numbers \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_p)\), \(i \in \mathbb{R}\)

Condition for system to be hyperbolic is \(A\) can be reduced to diag through \(\Gamma\)

u1 + ΓΛΓ-1 u1 = ΓΛΓ-1

∂t x

define w = Γ-1u

w + Λ w = 0

∂t x

⇒1 is a decoupled system if 4. ΓΛΓ-1 holds

⇒New variables w are called characteristic variables

p characteristic lines

⇒Suppose p=3, p×p system

λ1 70

λ2 70

λ3 60

  • for a system inflow and outflow must be referred to each variable of the system, not to the system as a whole.
  • o is inflow for w1, w2, outflow for w3
  • i is inflow for w3, outflow for w1, w2
  • b.c. must be provided on proper points (inflow & variable)

In general, set of points x - λit is called the Domain of dependence of the solution

D(x,t) {x - λit, i = ..., p }

w = Γ-1u ; A = ΓΛΓ-1wi + λi wi

∂t x

  • If A is diag. Γ will be a linear combination, Γ and Γ-1 will be just coefficients, related to eigenvectors of A
  • If A(u) in Γ we have solution itself, and mapping from characteristic to real variables is more difficult

How do we solve hyperbolic problems?

Finite Volume

  • → Very closely related to finite differences
  • We would like the numerical method to recover somehow the conservation of U
  • finite elements are not so good, classical Lagrangian finite elements are not conservative, not the best method to solve hyperbolic problems
  • →We look for a numerical method which mimics as much as possible dynamics of the physics problem:

real → model

  • elements in finite volume are called cells □ or ▽ or anything else
  • cubes (quadrilaterals) or parallelepipeds (exahedra) are easier to dere.
  • If very complicated you can have complex boundaries not so good
  • In practice we even have generic elements □ from the boundary, then close ∅ the boundary more structured mesh → good grid around boundaries, erosion away

• We’ll stick to 1D case: λ=const.

∂u + λ ∂u = ∂u + ∂(λu)

∂t ∂x ∂t ∂x

Dettagli
Publisher
A.A. 2017-2018
8 pagine
SSD Scienze matematiche e informatiche MAT/08 Analisi numerica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher gm_95 di informazioni apprese con la frequenza delle lezioni di Numerical Modeling of Differential Problem e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Miglio Edie.