Anteprima
Vedrai una selezione di 2 pagine su 15
General useful results and Elliptic Problems Pag. 1 General useful results and Elliptic Problems Pag. 2
1 su 15
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

NUMERICAL METHODS FOR DIFFERENTIAL EQNS

  • GENERAL USEFUL RESULTS (SPACES, FUNCTIONAL ANALYSIS, WEAK/STRONG FORM, FEM)
  • ELLIPTIC PROBLEMS

We want to define spaces in which functions are functions: how could we define them?

Properties of a space of vectors

  • Y is said to be subspace of X when Y is a subset of vector space X
    • e.g.: in R3, a subspace can be any plane

Consider 2 subspaces Y, W: Y + W = {u ∈ X : u = y + w, y ∈ Y, w ∈ W} → SUM

  • e.g. X ∈ R3 Y : {x ∈ R3 : x = (α,0,0), α ∈ R}
  • W : {x ∈ R3 : x = (0,β,0), α,β ∈ R}
  • Y ⊥ W : {x ∈ R3 : x = (α,β,0), α,β ∈ R}

Consider 2 subspaces Y, W Such that Y ⊥ W = X (Y ∩ W = {0}) → DIRECT SUM (⊕)

  • e.g. X ∈ R3
  • U: {x ∈ R3 : x = (α,β,0)}
  • V: {x ∈ R3 : x = (0,β,0)}
  • W: {x ∈ R3 : x = (0,0,0)}

Scalar product: u · v = |u| |v| cos θ, u, v ∈ R3, u · v ∈ R

We want to generalize it to a vector space (pencil)

From S.P. we derive: - length of a vector: ||u|| = sqrt(u · u) - distance: d(u,v) = ||u - v||

Properties (u,v) ∈ R, u,v ∈ X SP1 (u,v) = (v,u) SP2 (u + v, u) > 0 ↔ u = 0 SP4

(u, v) = 0 ↔ u and v are orthogonal

in vectors

can be generalized to any space admitting s.p.

Cauchy-Schwarz inequality:

We introduce a generic norm defining its properties

  • (N1)

  • (N2)

  • (N3)

More than one norm could be defined, with α concepts, meanings:

  • (p-norm) classical euclidean norm

  • (infinity norm) (can be seen as extension of p norm)

Vector space where u “lives”, is called NORMED vector space

Norm and scalar product properties have much in common:

defining

we have

(N1)

(N2) assured by (SP4)

(N3) direct consequence of (SP3)

(N4)

Cauchy-Schwarz

We can define a norm without s.p, but in practice it’s easier, as just seen

If I have a vector space in which I define a s.p. I can define a norm, so it is also a normed space

What about the converse (norm without s.p. = s.p. in the space)?

theorems of cosine into triangles

Parallelogram law ( ∀ vector space )

A norm does not satisfy parallelogram law there is no scalar product

The “right way to go” is from s.p. to norm

Norm is essential to check if a method is convergent or not

Two norms are said to be EQUIVALENT

e.g. in:

Dettagli
Publisher
A.A. 2017-2018
15 pagine
SSD Scienze matematiche e informatiche MAT/08 Analisi numerica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher gm_95 di informazioni apprese con la frequenza delle lezioni di Numerical Modeling of Differential Problem e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Miglio Edie.