vuoi
o PayPal
tutte le volte che vuoi
CONTINUO
X(t) = e{Ft} X(0)
e{Ft} = T e{Fst} T-1
V(x) = XT P X
V̇(x) = x'(FT P + P F)x
Q = -(FT P + P F)
ω(t) = H e{Ft} Ĝ + J δ(t)
W(S) = H(SI-F)-1 Ĝ + J
Ψ(s) = W(s)U(s) + H(SI-F)-1X(0)
DISCRETO
X(t) = Ft X(0)
Ft = T F{t/s} T-1
ΔV(x) = +X'[FT PF - P] x
Q = P - FT PF
ω(t) = HF(t:1) Ĝ + J δ(t)
W(z) = H(zI-F)-1 Ĝ + J
Ψ(z) = W(z)U(z) + H(zI-F)-1 Z X(0)
Θ̂MV = (FTR-1F)-1FT R-1 y
Varz(Θ̂MV) = (FTR-1F)-1 = Gi2
Θ̂MQ = (GT Ĝ)-1GT Z̆ = Gi2
[Θ̂ - kG, Θ̂ + kG]
k=2 → 95%
k=3 → 99%
Θ̂(y) = argminΘ (−log (P(y;Θ)))
I(Θ) = E [ ( d/dt ( -log (P1, P2) ) )2 ]
MSEΘ̂ = Var + BIAS2 = (E(x2)−E(x)2) + || Θ − E[Θ̂o(y) ] ||2
P(x) = (1/√(2π)σ) e−i((x−μ)2)/σ2