Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Esercizio 4.2
y(n) = 0.6y(n-1) - 0.08y(n-2) + x(n) - x(n-1)
Y(z) = 0.6z-1Y(z) - 0.08z-2Y(z) + X(z) - z-1X(z)
Y(z)(1-0.6z-1 - 0.08z-2) = X(z)(1-z-1)
H(z) = 1-z-1/1-0.6z-1 + 0.08z-2
POLI = z20.6z + 0.08 = 0
Z1 = 0.4, Z2 = 0.2
0.6 ± √(0.36 - 0.08)/2, 0.6 + 0.2/2
|H(i)| = √2/√0.86i + 2i = √2/√2.3664 = 1.287
∠H(i) = -π/4 → ω(rad) (11.882o)
1 - z-1 = 1 - z-1/(1-0.6z-1)(1-0.2z-1) = A + B/(1-0.6z-1)(1-0.2z-1)
- A - 0.2z-1A + B - 0.2z-1B = -z-1(0.2A + 0.2B) + A + B = 1 - z-1
- A + B - 1{0.2A + 0.2B}
- A = 1 - B
- 0.2 - 0.2B + 0.4B = 1
- B = 0.8, A = 0.2
- A = 3
4 * 1/1 - 0.2z-1 - 3 * 1/1 - 0.6z-1 = ( (0.2) n (0.4)/n)
S(t) = 5t , -1/2 ≤ t < 1/2
can T = 2s
0 Hz ⇒ m/2 = 0 ⇒ m = 0
0.5 Hz ⇒ m/2 = 1/2 ⇒ m = 1
1 Hz ⇒ m/2 = 1 ⇒ m = 2
S(t) = Σ Bm e-i2πmt
Cm = 1/2 ∫ -1 1 5t e-i2πmt dt
C0 = 1/2 ∫ -1 1 5t e-i2π 0 t dt = 1/2 ∫ -1 1 5t dt = [5/2 (1/2 t2)] -1 1 = 5/2 (1/2 - 1/2) = 0
Cn = 1/2 ∫ -1 1 5t e-i2πnt dt = 1/2 ∫ -1 1 5t e-iπt dt = 5/2 ∫ -1 1 t e-iπt dt
= 5/2 { [t / iπ e-iπt] -1 1 - ∫ -1 1 e-iπt dt } = 5/2 { 1/-iπ e-iπ 1/iπ e-iπ - [1/iπ e-iπt ] -1 1 }
= 5/2 { 1/iπ [ e-iπ + eiπ ] + 1/iπ (e-iπ - eiπ) } = 5/2 { -2/iπ } = = - 5/iπ
C2 = 1/2 ∫ -1 1 5t e-i2π (2/2) t dt = 5/2 ∫ -1 1 t e-i2πt dt
= 5/2 { [t / i2π e-i2πt ] -1 1 - ∫ -1 1 e-i2πt dt } = 5/2 { -1/i2π e-i2π 1/i2π ei2π + 1/i2π [ e-i2πt ] -1 1 }
= 5/2 { -2/i2π + 1/i2π [ e-i2π i2π 1 - -1 -1 ] } = - 5/i2π = 5/2π i
es.2.2
s(t) = 12 sin(8πt)
fs = 48 Hz
Δf = 0.25 Hz
Δf = fs / N → N = fs / Δf = 48 / 0.25 = 192
DURATA = 192 / 48 = 4 sec.
CORRISPONDE A FREQUENZA 24 * 0.25 = 6 Hz
NORMALIZZATA 6 / 48 = 1 / 8 = f / fs
X(k) = ∑ x(m) e-j2π km / N
1 / 48 → 58º 1 / 6 = 12
Y(m)=0.8y(m-1)-0.81y(m-2)+x(m)
DETERMINARE H(z), POLI, ZERI, ROC, RISPN FREQP ERF: 1/2,1/2
Y(z)=0.8z-1Y(z)-0.81z-2Y(z)+X(z)
Y(z)(1-0.8z-1+0.81z-2)=X(z)
H(z)=1/1-0.8z-1+0.81z-2
2/2
POLI=z2-0.8z+0.81=0
z1/2=0.8±sqrt(0.81-4∙0.81)/2
=0.8±sqrt(-1.3∙0.81)/2
=0.3±i∙0.811/23/2
|z1/2|=0.45∙sqrt(1+3)=0.8
∠z1=atan(0.45√3/0.45)=atan(√3)∙60
∠z2=atan(-0.45√3/0.45)=atan(-√3)∙-60
=0.45±i∙0.45√3
=0,45(1±i√3)
ROC: CERCHIO ESTERNO A RAGGIO 0.8
H(ei2π)=H(1)=1/1+0.8-0.81=1/2.7
- |H(1)|=1/2.7
- ∠H(1)=0
H(eiπ)=H(i)=1/1+0.8i-0.81=1/0.9+0.8i
- |H(i)|=1/0.92+0.82=1/0.5858≈1.08
- ∠H(i)=0-atan(0.8/0.9)≈-78°
1.a Determinare spettro di x(t) = cos5(2πt)
x(t) = cos(2πt)cos(2πt)cos(2πt)
X(f) = [1/2 δ(f−1) + 1/2 δ(f+1)] ⊗ [1/2 δ(f−1) + 1/2 δ(f+1)]
= 3/8 δ(f−1) + 3/8 δ(f+1) + 1/8 δ(f+3) + 1/8 δ(f−3)
x(t) = 1/2 cos(6πt) + 3/5 cos(2πt)
τ = 1/3
xτ(t) = Σm=-∞∞ Cm ei2π3t
Cm = 3/4 ∫-1/21/2 cos(6πt) e-i2πm3t dt
C1 = 3/4 ∫[ei6πt + e-i6πt] / 2 e-i2π3t dt
= 3/8 ∫0τ e-i12πt dt
= 3/8 [e-i12πt/-i12π]
= 3/8 + 3/8 [e-i12πt/-i12π − e0]
= 1/8
C2 = Cm = ⌀
γ(t) =
∫-10 (t+τ)(4+τ-t) dτ + ∫0t (4-τ)(1-τ+t) dτ + ∫t1 (1-τ)(1-τ+t) dτ
= 1/6 (-t3 + 3t + 2) - 1/6 (t2 6t + 6) + 1/6 (-t3 + 3t + 2)
= 1/3 (-t3 + 3t + 2) - 1/6 (t2 6t + 6)
0 ≤ t < 1
γ(t) =
∫t-1t (4-τ-t)(4-τ-t) dτ + ∫0t (4-τ)(1-τ+t) dτ + ∫t1 (1-τ)(1-τ+t) dτ
= 1/3 (-t3 3t + 2) + 1/6 (t2 6t + 6)
1 ≤ t < 2
γ(t) =
∫t-11 (t-τ)(1+τ-t) dτ = -1/6 (t-2)3
γ(t) =
{
- 0 t < -2
- 1/6 (t+2)3 -2 ≤ t < -1
- 1/3 (t3 + 3t + 2) + 1/6 (t2 6t + 6) 0 ≤ t < 1
- -1/6 (t-2)3 1 ≤ t < 2