Anteprima
Vedrai una selezione di 9 pagine su 36
Botanica Generale Pag. 1 Botanica Generale Pag. 2
Anteprima di 9 pagg. su 36.
Scarica il documento per vederlo tutto.
Botanica Generale Pag. 6
Anteprima di 9 pagg. su 36.
Scarica il documento per vederlo tutto.
Botanica Generale Pag. 11
Anteprima di 9 pagg. su 36.
Scarica il documento per vederlo tutto.
Botanica Generale Pag. 16
Anteprima di 9 pagg. su 36.
Scarica il documento per vederlo tutto.
Botanica Generale Pag. 21
Anteprima di 9 pagg. su 36.
Scarica il documento per vederlo tutto.
Botanica Generale Pag. 26
Anteprima di 9 pagg. su 36.
Scarica il documento per vederlo tutto.
Botanica Generale Pag. 31
Anteprima di 9 pagg. su 36.
Scarica il documento per vederlo tutto.
Botanica Generale Pag. 36
1 su 36
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

BOTANICA

Si possono riconoscere due diversi gruppi di organismi:

Procarioti = non presentano nucleo, ma hanno un nucleoide all’interno del

• quale è collocato il DNA, sotto forma di una grossa molecola circolare,

debolmente legata a delle proteine. Non sono presenti organelli specializzati.

Eucarioti = presenza di nucleo che contiene il DNA lineare, associato a speciali

• proteine (istoni). Sono presenti diversi organelli delimitati da membrana, con

apposite funzioni.

La cellula vegetale: cellula eucariotica.

La cellula vegetale ha una forma allungata e non sferica, in quanto la sua

capacità di assorbire sostanze è inversamente proporzionale alle sue dimensioni

ed è composta da diverse parti:

Parete cellulare: è un involucro esterno che da forma (i diversi tipi di cellule

• vengono identificati anche sulla base della struttura/funzione della parete),

protegge, evitando la rottura del plasmalemma dovuta all’accrescimento della

cellula in seguito all’assorbimento di acqua da parte del vacuolo, e sostiene la

cellula. É formata prevalentemente da cellulosa (polimero di glucosio legato a

beta 1-4 con legami H), organizzata in microfibrille (10-25 nanometri). Queste

sono formate a loro volta da micelle, arragimaneti cristiallini di microfibrille,

che formano sottili filamente altamente robusti. Oltre alla cellulosa è presente

anche la lignina, un polimero organico che impedisce l’entrata di patogeni, per

alcuni funghi sono in grado di degradarla e quindi riescono ad entrare nella

cellula. Ha anche la funzione di conferire resistenza alla cellula. Queste fibre

di cellulosa sono ricoperte da diverse proteine, come le emicellulose (limita

l’estensibilità della parete tenendo insieme le microfibrille) e la pectina

(conferisce plasticità e flessibilità alla cellula).

Più microfibrille insieme formano le macrofibrille, che sono immerse in una

matrice elastica e rigidia allo stesso tempo. Oltre alla lignina e alla cellulosa

può essere presente in grandi quantità il callosio, soprattutto in zone della

pianta sottoposte a stress, oppure coinvolte nella riproduzione cellulare. La

cellula vegetale possiede altre sostanze grasse, come la cutina che è

importante per la protezione delle foglie; la suberina invece produce il fusto

delle piante e le cere fungono da protezione. Alcuni enzimi, come la cellulasi,

pectinasi, fosfatasi, sono necessari per degradare la parete e permettere la

riproduzione cellulare o sono importanti per la maturazione del frutto

(pectinasi).

Sono anche presenti dei piccoli canali, chiamati punteggiature, che

permettono il passaggio del citoplasma e di sostanze da una cellula all’altra,

infatti spesso si trovano in corrispondenza di una punteggiatura di un’altra

cellula. Qui la parete primaria è più sottile ed è attraversata da plasmodesmi,

steretti canali delimitati dalla membrana plasmatica grazie ai quali le cellule

comunicano. Essi permettono il passaggio di RNA; di energia e di diverse

proteine. Possono essere di due tipi: primari, se si originano durante la

citodieresi; secondari, se si formano dopo. Questi plasmodesmi sono

attraversati da un tubulo derivante dal RE, noto come desmotubulo. Ai lati di

questo desmotubulo sono presenti delle proteine, come actina e miosina che

svolgono un’importante funzione nella contrazione del suo lume regolando

1

l’ampiezza d’apertura e ingombrano il canale impedendo il passaggio di

molecole troppo grosse ---> selettività.

L’insieme di tutti i protoplasti (protoplasto: citoplasma + nucleo) e dei loro

plasmodesmi è un sistema continuo e si chiama simplasto. Questo è avvolto

da un apoplasto che comprende anche tutti gli spazi rimanenti, mentre il

processo di passaggio di sostanze tra le cellule è chiamato trasporto

simplastico.

Inoltre l'entrata dell'acqua nella cellula ne determina l'espansione, creando

una pressione di turgore al suo interno (vedi vacuolo); questa pressione è

bilanciata dalla resistenza meccanica della parete cellulare.

La parete cellulare divide in 3 strati:

- Parete primaria: si forma durante la fase di distensione, ovvero il momento

in cui le cellule crescono. Essendosi formata in questa fase è caratterizzata da

una forte elasticità ed è composta per una parte da un componente fibrillare

---> le microfibrille di cellulosa, che possono disporsi in modo parallelo ---> la

zona è definita “cristallina”; in modo irregolare ---> la zona è definita

“amorfa”.

- Lamella mediana: è lo strato più esterno, formato da pectina, che si forma

durante il processo di mitosi cellulare ed unisce due cellule adiacenti; è

attraversata da filamenti di citoplasma e dai plasmodesmi.

- Parete secondaria: viene sintetizzata durante la fase di differenziazione (che

avviene dopo la distensione, consiste nella differenziazione delle cellule in

base alla loro funzione e al tessuto a cui appartengono). Non sempre è

presente e ha una funzione di supporto; contiene sia cellulosa che lignina.

Inoltre può essere stratificata: strato esterno (s1), mediano (s2) e interno (s3).

É prodotta dal protoplasto.

Sotto la parete cellulare è presente la

Membrana plasmatica o plasmalemma---> separa la cellula dall'ambiente

• esterno, media e regola gli scambi di elementi e sostanze chimiche. É formata,

come tutte le membrane, da un doppio strato di fosfolipidi

Nucleo: controlla lo svolgimenti delle attività della cellula e racchiude la

• maggior parte delle informazioni genetiche e le trasmette alle cellule figlie.

É delimitato da una doppia membrana, involucro nucleare, che presenta dei

pori nucleari --> via di passaggio diretta per gli scambi di materiali tra il

nucleo e il citoplasma. All’interno dell’involucro nucleare è presente anche il

nucleolo, che contiene in grandi quantità RNA e proteine --> è la sede della

produzione delle subunità dei ribosomi, che quando fuoriescono tramite i pori

vengono assemblate in ribosomi veri e propri. I ribosomi, formati da una

subunità grande e una piccola, si occupano della sintesi proteica e quindi della

traduzione dell’informazione genetica.

Plastidi: organelli caratteristici della cellula vegetale. Sono coinvolti nel

• processo di fotosintesi e sono di 3 tipi: cloroplasti, cromoplasti, leucoplasti.

Tutti e tre sono delimitati da due membrane, ma internamente si

differenziano in base alla loro funzione.

A)Cloroplasti: sito della fotosintesi clorofilliana. Sono tantissimi e piccoli, si

trovano sotto il plasmalemma per una maggiore recezione della luce ---> si

dispongono inizialmente lungo tutta la superficie della cellula, ma se

l’intensità luminosa è troppo elevata, per evitare eventuali danni, essi si

2

distribuiscono lungo delle file vertcali. Sono attivi solo durante periodi caldi,

luminosi e contengono clorofilla che gli conferisce il colore verde. Quando la

cellula invecchia la clorofilla si degrada ed emergono altri pigmenti, già

presenti prima, come i carotenoidi e le antocianine (arancione rossastro).

Struttura dei cloroplasti:

Presenta un involucro: doppia membrana di tipo lipoproteico, che ne separa il

contenuto dal citoplasma --->

1. Membrana esterna= dotata di proteine, le porine, che formano canali

permeabili a molecole di ridotte dimensioni con funzione di riconoscere e

importare proteine sintetizzate nel citoplasma;

2. Membrana interna= altamente selettiva; permeabile a molecole neutre di

ridotta dimensione.

All’interno di queste due membrane è presente uno stroma: sostanza incolore,

amorfa, in cui sono immersi i tilacoidi. Quasi il 50% è costituito da rubisco: il

più importante enzima plastidiale coinvolto nella fotosintesi. É formata da 8

subunità proteiche grandi e 8 subunità piccole ---> infatti è ricca di ribosomi,

in cui risiedono alcuni enzimi addetti alla organicazione del carbonio. Nello

stroma sono riconosciute una o più regioni chiare senza grana, chiamate

nucleodi, in cui si trova il DNA plastidiale. I tilacoidi (o lamelle) sono un

complesso sistema di membrane, che formano sacchi appiattiti --->

1.Tilacoidi dei grana = si sovrappongono costituendo pile compatte;

2.Tilacoidi intergrana = decorrono lungo asse maggiore del cloroplasto

connettendo diversi tilacoidi, perché essi sono in continuità tra loro.

B)Cromoplasti: non contengono clorofilla, bensì sintentizzano e accumulano

carotenoidi, per questo hanno colore giallo, arancione o rosso. Possono

derivare dal differenziamento dei cloroplasti attraverso la degradazione della

clorofilla e l’accumulo di carotenoidi nei tilacoidi. Questi pigmenti attraggono

molto gli insetti e per questo i cromoplasti svolgono una funzione importante

nel processo d’impollinazione.

Struttura dei cromoplasti:

- sono più semplici dei cloroplasti;

- le membrane interne sono ridotte e meno organizzate grazie presenza di

vescicole;

- sono presenti meno proteine;

- presenza di DNA e RNA;

- lipidi abbondanti;

C)Leucoplasti: sono i meno differenziati di tutti i plastidi. Sono privi di

pigmenti, infatti hanno colore bianco, ma sono ricchi di amido (amiloplasti). Si

trovano nelle parti non verdi della pianta e non colpite particolarmente dalla

luce: radici, semi. Si classificano in base alle sostanze prodotte o accumulate:

Elaioplasti = accumulano lipidi;

Proteinoplasti = immagazzinano proteine

Amiloplasti = accumulano carboidrati sotto forma di amido*.

Struttura dei leucoplasti:

- Sistema di doppia membrana interna ed esterna poco elaborato;

- Sistema di tilacoidi rudimentale e frammentario;

- Abbondante stroma con i granuli di amido;

*L’amido: l’amido primario si forma durante la fotosintesi nei cloroplasti, dove

3

è depositato in piccoli granuli e durante la notte, quando non si effettua la

fotosintesi, viene idrolizzato in dimeri di saccarosio (un glucosio + un

fruttosio) i quali vengono poi trasferiti negli organi di riserva (leucoplasti)

dove si ripolimerizzano a formare l’amido secondario costituito da amilosio ed

amilopectina.

Tutti i plastidi derivano da dei proplastidi, ma possono derivare anche l’uno

dall’altro. Per esempio quando si forma un cloroplasto da un proplastide, esso

in seguito all’invecchiamento e alla degradazione della clorofilla, può

diventare un cromoplasto, in quanto i tilacoidi hanno iniziato ad accumulare

pigmenti carotenoidi. Quando anche quest’ultimi vanno incontro alla

degradazione, il cromoplasto diventa un leucoplasto incolore.

Vacuolo: è un organello circondato da una membrana che prende il nome di

• tonoplasto, che racchiude i

Dettagli
A.A. 2016-2017
36 pagine
1 download
SSD Scienze biologiche BIO/01 Botanica generale

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher gemma.inghlieri di informazioni apprese con la frequenza delle lezioni di Botanica e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Università degli Studi di Pavia o del prof Tosi Solveig.