Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Corso: Tecnica delle Costruzioni
Professore: Franco BontempiCFU: 12 (6 CFU di CdI)Libro: Radoania (Acciaio) e (Calcestruzzo Armato) Franco Bontempi → Slide Share (documentazione e Testi d'esame)
Caratteristiche elementari delle strutture
Le strutture in acciaio più semplici sono quelle che hanno uno schema pendolare
In una struttura deve essere possibile l'equilibrio: No l'abilitàConsideriamo inizialmente strutture bi-dimensionali (2D)
Caratteristiche di una struttura:
Cerniera interna (nucleo interno)V Carico verticale → Trave → Raccoglie il carico
Colonna (se in acciaio)Pilastro (se in calcestruzzo armato)Trasferisce il carico
Cerniera a terra (nucleo esterno)
Tutti gli elementi di una struttura in acciaio sono prefabbricati, standardizzati. Ad esempio la trave in figura potrebbe essere una IPE 400 (alto 400 mm) e la colonna potrebbe essere una HEB 200.Ci sono molte diverse categorie d'acciaio: S235, S245, S355, S460.
La struttura precedente così come è fatta non è completa perché le colate pendio per vincersi in urto con colate vicine, le colonnine cioè possono devadiate di un angolo φ (angolo di slantore) finse a far collassare la struttura.
Quindi per evitare ciò anche con un elemento che raccoglie il carica (trave) e un elemento che trasfersce il carica (colonna) serve un terzo elemento che è un elemento di stabilizzazione o di controvento (cv).
Per capire se ci sono eventuali laborietà bisogna procedere nel seguente modo:
Le 4 aste sono una struttura reticolare Bisogna vedere se c'è qualche struttura elemento instrastico o ipostrico Una volta individuato tale struttura essa potrà essere il punto di appoggio di altre parti della struttura e quindi le strutture e il strutture
Riconsco uno schema basso di comportamento distristico che c'è l'arco a tre cerniere dove doblune 3 cerniere con alluoyot e
Giungiamo adesso al caso base
Supponiamo che la forza orizzontale si divida in parti uguali tra le reazioni orizzontali sulle basi, e sappiamo che la torre si raddrizza poco deformando cioè rigida.
Arrivai adesso a 2 ipotesi:
- regolarità
- traslazione rigida >JE = 0
Nel nodo (1) la prima parte di carico orizzontale F1 secondi vol 1r sono e così per gli altri nodi.Si generano delle forze di compressione che diventano forze di taglio alla base delle colonne
Si fa ccio l'equilibrio il nodo e uno
3/4 F1/2 F
A1/2 F1
N2 = 3/4 F1
In direzione orizzontale nel nodo l
F12/4
h
N4 A F1N1 + Ta - F1 = 0 -> N1 = F1 - F1 - F1 = 3/2 F
* N3 A
N2 B N1 F1 3F1/4 = 0 -> N2 = 3/4 F - F/4 = 2F/4 = 1F/2
Le due aste di sinistra formano una linea di controventamento, cioè un cantilever senza carico.
Anche se questa cade è nello spazio, può quindi essere calcolata.
Ci sono nel piano del controventamento tante aste che non contano.
Con questo controvento, la struttura è equilibrata ed è come un corpo rigido. Facendo fessure si può cadere un’altra come rendere la struttura solida.
La direzione considerata è quella che causa il controventamento nelle uniche due aste.
La struttura è stabile. Considerando solo la forza orizzontale ipotesi, se tutte le aste sono controventate posso cadere una cinquemila più di quella fascia verticale.
Quale usiamo tipologie di controventamenti verticali?
Questa è una soluzione ma richiede sapere delle altre. Bisogna:
- Rendere resistente l’orizzontamento (a meno di 3 vinci rigidi)
- Posizionare 3 controventi verticali come consoli (senso dei 2 assi coincidente unica)
Oppure:
Non è una struttura reticolare perché i carichi non sono solo sui nodi.
Cosa si vede?
Il carico orizzontale F influisce TUTTA la struttura
Il carico distribuito, invece, è localizzato solo sulla prima asta orizzontale
Quindi ho fatto ritornare lo schema classico, se ho solo il carico distribuito q
INTENSIVI
15/10/2020
Principio di Kirchoff
Il principio della sovrapposizione degli effetti è il caso generale del principio di Kirchoff che dice che se:
- Il materiale è elastico lineare
- Gli spostamenti sono piccoli (posso scrivere l'equilibrio nella configurazione indeformata)
Allora:
La soluzione del problema strutturale: a) è sempre b) unica
Ad es. considerando la seguente struttura
Considero un carico PB qui posto di là:
Sotto il carico PB ottengo la freccia di SA
Il carico deformando spostandosi deve una, N, T e M e vediamo
cosa succede
le mensole regola molto di s
Ho uno scorrimento verso il basso
di t
Ho una rotazione di 0
La parte flessionale, quella relativa al momento M, è prevalente
rispetto alle altre due (N, T). In generale quindi, in un
sistema di travi, la maggior parte delle deformazioni è
figlia di un comportamento flessionale.
Quindi, in generale, nelle travi che noi andiamo possiamo dire che:
- La trazione, per taglio e flessionale
- Gli abbassamento delle travi sono trascurabili
- La deformabilità di una trave è legata al momento flettente (M)
In queste 3 frasi creiamo devi nodi circuiti che si
serrano per capire come si deformano le strutture.
ES.
q1=1N/m
P2=15 kN
PE 400 (Profilo)
S 235 (Acciaio)
E=210000 N/mm2
q1
α
P2
q1 + P2
Preso il mio punto ed individuo i coefficienti che mi servono per risolvere l'esercizio
f = Pg3/3EJ
f = 5/384 q4 e4 / EJ
α = qp3 / 24EJ
α = μP / 3EJ
β = μLc / 3EJ
Mi viene cosi
Non ho questo numeri da dove s
Se il Traversa non è rigida, ma è un telaio a nodi mobili
TEST
Quindi il Telaio è a nodi mobili
La rotazione è contrastata perché c'è la continuità flessionale
NO - La curvatura della deflesse sulla colonna è diversa
Questo è un solido che NON funziona come una Trave di Saint-Venant
Perché?
SfN2 è ancora accettabile?
La Teoria di Saint-Venant prevede che gli spostamenti
che la Trave subisce siano piccoli. Se la Trave è troppo corta si
deforma tantissimo e quindi non è vero che gli spostamenti
siano piccoli.
- ASSE RETTILINEO, SEZIONE COSTANTE
- CARRICHI APPLICATI SOLO ALL'ESTREMITÀ => NO forze di colonna
TEORIA TECNICA DELLE TRAVI
porti in continuità tra Trave e colonna
zone d'influenza
metodo dei tracci
ragione di Bernoulli
Ch: luce Teorica
Cn: luce Reale
hr: altezza Teorica
hr: altezza reale