Anteprima
Vedrai una selezione di 10 pagine su 83
Appunti Mechanical System Dynamics Pag. 1 Appunti Mechanical System Dynamics Pag. 2
Anteprima di 10 pagg. su 83.
Scarica il documento per vederlo tutto.
Appunti Mechanical System Dynamics Pag. 6
Anteprima di 10 pagg. su 83.
Scarica il documento per vederlo tutto.
Appunti Mechanical System Dynamics Pag. 11
Anteprima di 10 pagg. su 83.
Scarica il documento per vederlo tutto.
Appunti Mechanical System Dynamics Pag. 16
Anteprima di 10 pagg. su 83.
Scarica il documento per vederlo tutto.
Appunti Mechanical System Dynamics Pag. 21
Anteprima di 10 pagg. su 83.
Scarica il documento per vederlo tutto.
Appunti Mechanical System Dynamics Pag. 26
Anteprima di 10 pagg. su 83.
Scarica il documento per vederlo tutto.
Appunti Mechanical System Dynamics Pag. 31
Anteprima di 10 pagg. su 83.
Scarica il documento per vederlo tutto.
Appunti Mechanical System Dynamics Pag. 36
Anteprima di 10 pagg. su 83.
Scarica il documento per vederlo tutto.
Appunti Mechanical System Dynamics Pag. 41
1 su 83
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

DNmemslbydegdriBed W or 3onRto have_ ndegrees oF reedom OmdBeamfiaite element We hovetwo hodes Tcmd Omd aset0 hpda OordinaTes HTTH6 nodaU Coordinotes.=AXaLdISPlgUeMeMLDA tkhR eoaM 3ectiono e t nodde.wstaromsVerse disela.cmemt Of+ _bROM_jOXISShapefunctioisAowto xeresS themotion OF everYSect on Ofh baM S fVACtion 0f n o doal Cobr dihates.Share nctionsoe formulated n thei Local YRfRrehca SysteM Weare goina to nave o Shdpe uCion for xid TSela MntiEor|trows V s e d iselalcÓ Mmt Cm d fo otation.I AxTal defTMationhe Snace functions are oss uMe to be nearfUndtionS oF 5Shope tUnctions E tereolatinu(5it)- a tb3 AUnEtidnsWe assuMe that axial deformat ion linear function becaus e asSUMe Hhat the ele ment S SUBJecTed to loads whionarc donenrotida t t h nodeS: FfUnifprm oxalWe know hat EA Ex=A 6I EN md EA are ConsOMtEDEX=ConSTamEinear funcfion_ of g E CC L3ExTho ShoPe functons are nea RMCtionS oecause ueCy aSSUMM8 that 00dCar concehtratéd atithe nodes.This oPer oadh T Valid ao for

More RMeraul_COJes|_LiKe the following:

8EWeshT Per UniengthP 4PL4 8 Wth finite eleMe Methods,wgoehe west can Com JSCcetiethRSUOUe WthSelemngmtS th eaUaL 1em8thMoaied asodstribuTed lo0d.4PL

These (Oauds oreiotfhk reaL 0adsBt oM aper oxiMetionUniform axia load fo each Qlemols25P =)Naw be constomtEK W be Constmt2se N iS ncreo-sin8 ind i s t e t e wAy3, SeuN W Qlways 2sbe con$ tamt,SincR eyery 0ad iSSUbstti e dwtheauiNalRMt loÖds ape liedt t h L nodes RealU dhSTeibJtonJ e haue todetermihe thtuuo ConstaE a d bby iMPosinsProPeN OUnddyCohditi0hsLutojel=xtLtEX X bLKX. LKUhidhCom be rewrtten as.-L MotriK formulationh expresSOn becoesThe stherxe don'ContribteOxtalgelace =MtLnThe Shaee functons Yeeegemt th dtnaCRm 0 oCross Secton wnen wemi t dsolacemmtsiMASSed While Hhaothirc dbf ore KePT ixedobtalinBending deformationME) W3t)atb3 gd3IKQ ShafPe funetithO case of bRrdinadefermation ore assUMedto be b i tLoods are nly oCting tohu hodes,HHore ForeCorrect o esTMotE |wst as

&WbiUfMct0nRealcton ForcesTClaMPed beaMVf CHEEDHnenever are deaMR WHh COncatraie dbadd Ofelies at|th nodeS we_ate PoARMave onstat gheÓr Force md Lne beudiaciMOMMtFL AccordinodeFlRction ne equafionM-EUa 2 ebe Gbic fnct0na Of he shean force TSht r d e r NtivLg£thbendng IMOMPMwt,n h s Case hove4we Wikho wnS nfh eQuation WeSO argoingneed 4 Poundaucy COnditionSwto WWTch oloyosConStaS QSLb-9Td LWhTh Cm be Wrtten MatriX formulat ion às:Where: Y-4WA3) WA- sAS before Shagehe FUnctioneresnt n dselaceMeMt ofTbeaM, uwhen th dof oreFxed, md C UntoY dplacRmant WAConsidaring.Then by t hof ShafMeomS fUnctionSWe have obtaned .We noticecom thatu(37t)-(3) XK (E) Axial n beding defpcmotonare de(oVple dw3i4)-5 ()M () SE aea functian Dfnode s dSelacemitXTCwnd X.t1s Cnean COMbination7 a o fhending Cwbic Snar functojdeforMation eY85c MASS MATRIX OF THE REAM FINITE ELEHENTThe Kinete nergY of Hh beam cam be exenesed aSince o=oxtoT J dTThe exeression com be rewrHe to motixomuiotion asTJ

)45 48y troducig the relationshios OMing Erom Hh a e tinctianSul)-6) )2)2wThe becomesKinetc ener3YT t 1 13)mfid m u1dKinetic nrRyCf Kth be0M( HE fnTe etemetn-5)m1)d he MaSS MatrX S determinedleRthBYSTIEfNESs BEAM FINITE¬LEMENTMATX THEOFVe4EA( E( hear defoxmatonCmbeeectecd.Ve Kawe troduce Hhexpresson 0fhChage EUnctIDiu(3t) u(3)e) 3 5) 2 ()wwt)=(IXÉLE) = w(3)x19hn we dbtain Elastic PotetiaU nerRVax [K]() Df Hho Kbeam element(48:00 26/04/0The Dara/MO-Ers that deterMine the StFness Metrix 6,AJLk,oreMesh Kiserimenio >vincoieveloe the FE Model 0f o Structure>Mashgenerationicalie DamPng AsemlasTO Traskor ma -EnergiaEioneDefinition of the local amd global reFerenco System>Removal exterval ConsTraints amdof ntroductioh of e correSFOndin onSTaint förc@s>FormUlaton of the knergy JnctionS in th local nodal oordinates Of each elememt.Coord ina te tronSformotion rOM fha local t0 the global referemSYSTemMatriX aSsEmbling for the &ntire srtuneModal of thr Structurul

damAln8Re-introduot ion of EXterh Constroints omd Matvix partiTon4HOsh 8eneration TV

When generate the MeShwe we 5MUST ado ef h i fbllowing criter ja o/2

We MUST Postion o node nCOrreseOndeCL OF. Cmy Kind ofdTScontinitY Chonge 0F Section chom ge ofThe ength of a Materia teSeCtiOMS OFbeamS,oeom Shall, not exceed Oncentrad RUements etta certain limtVole (2/04-4:48503-deA@mding on t h MxiMUAdriring freaumCy a x thoFOrces actinF StTCrUreOn CommitOmdprDPeCIíestn materialderendsalsoValu on(iMitThebe eXPress e d3 a s The nat. Freq. of u e lemewtnas tobew=TS w > mx9 LK <LhaXmKTr formula Each inite elEMmt Shouid worK in S refered fo S quos-STafic reg onapinned -pinnedbeom Wnen We debine t h Shape funCtions We assuma t they areStutie2-DeFinttian ge h local Cmd glool reFeremce SystemWe def inea reFeremcR SYSteM_ for the YG Yu2mtine sTruct ure, omd a local referenCe SYSteM For each 0n of theCther elem?mtS XLLWe Modal eveY elememt n h localSYSteM beauSe i f Uer e e r m e formvlation iS

Mdepedo that, thi XGdemt On t h Oriehtot:0o of +hRLeMemt.3-Removal of ConSTraints amd introduction OF Correseonding onstFrainiorceSWe conSider Hhe StrucHure aS A TSIee,amd we SoSTitut thu CarrSPondin3 ConsTraint ForceS4-Ener37 funetions formuiaton n thnodal COordjina tes OF each elemmt VBY definition ue Know h a t Te ( [H()T Tk Where («#))[V]V Vik (KÉVuhere The dTSSIPatioSW =SUW + SWer= SWe2 SWexe FunctiOn_WiUl 6eSWexe k trodced lat+erThe totol kinetc meraY Omd Fotentia ener8Y IS given by the Sumof thL Cotibtions COminR Arom each elemmSWe Ha Sxf Va S STL He Sx+VMa= + SY M SOE+we dontConSiderhSWe xe Cohribution theOf8raNHOOnal ehery beause we cre aroUndeaoiiEí)mhe fos ition.Where: The nodla Coordinotes reeresemtPerturbation oround th equittbrtUmV FOsittonMnSoMe CondtidnS H The Contribution s h gravitationalt h bnStraitCoULd Ondergo Forces She8ii3ibe.VdUPlacem@t. 420 - 04/or 4Ve= Variat ion O eiagtic Potemtial dneraY, Starting from thu equtlbr UnPostonThe extermalIl testo formattato con i tag HTML è il seguente:

Forces could be either external or internal forces. Active external forces are those where the structure is constrained or fixed. The external work of the reaction forces will be zero when the external active forces applied are in equilibrium. We apply the Saint-Venant's Principle as the reference for the external forces applied in the nodes. We have to follow the following procedure:

  1. Express the displacements as:
  2. Nodal Displacement = (Sx * u) + (Sy * v) + (Sz * w)

  3. Substitute inside the expression of the virtual work:
  4. Virtual Work = ∫(Sx * Fx + Sy * Fy + Sz * Fz) dV

  5. Consider the equivalent nodal forces:
  6. Equivalent Nodal Forces = (Sx * Fx) + (Sy * Fy) + (Sz * Fz)

  7. Calculate the virtual work:
  8. Virtual Work = ∫(Sx * Fx + Sy * Fy + Sz * Fz) dV

By following these steps, we can determine the coordinate transformation from the global coordinate system to the local coordinate system.

refëremo SStem: eXPresS the noda dSelacemem3 wthe t to th Com on 3lobalreerena 3KSTemYA X relalnearfollowin8theconsider =eTLOnSbi;|X XCoS(dr)tY*Jin (««)X Sn ldu t y c»5 (dnesprimere l CDOrdtngPlooali in Funto E oreMrtafionAK Clementquele localiceoinverreUR com reWritt the expressiDn in matrix forMo iatin asA1x Cos KSn dkWherc -Sind ca 0beecmproOdreh 3 napplicd to node G]2 Then bY expressing8XKLCoordinate TromSFoC mation then it Should pe troduced inside the IexpreSSTon s Of th Kintic,elastic Omd potential 2hecR Y ad thVirtdaL Worko each elem @mtt hThen xprasconsFollowingobtainweT [H:]K) A][h:][A])alwaZSkMatrixThetho Some f o eoch elemiyt,T T ()[H:](%#) hOKhowneedwe JutCmgleVak [K:]()-()[A]n*]LA-]())K]()Va E(SxE)A(FR(SxSWer itotakesEkWheref(Sx) oth pnCehtraeSWo CCCOvht= ed ond dastribuTed foras.6-Matrix assembiing r the tire struotone theROfsteCoodrahodalglobaltheMatriKColUmnincollectW aentire STrUCtUre.x YXX =Y TOnS TainedXG nodesX

Co0ConSTrainedthKeepseparatedWe 0neS.EreeFromthurdinates asse/mbledmoutrix arefonasexterhalamdStiHfnessThe mass, Prope eXtraCHi0n MmatriceSbY mems Ctains the informationS 0FOFteS,nCCoordhodaWwnere t niMS+dearex- [E«] elemonheolUmn MUtri XWh+chCollectth_Moa odrdinamtire SNUCtUretes of thteros everyuwhere i5A4.WhereHsCOordino paSseselementbeamSh8leO OneMatriXhLerocedurethiSth nxh-OGXGFomFor eXaMPleinhe case Of eleMemt TTEIhJ[e]Where e : - P fre ConstroanedCnE1ol1olo1Then we Obtuin 1lio|lal1o[EHJE] totelolThe exeohnded ratriceg oA allHh elements arerm SDMMLd VAin order foObto agRTegafe STroctUrY McH cegI EE ExPmded: Global refocal reeremcaL MattiCQs_YSHeSYETemNT T TEME] E]E) H

Dettagli
Publisher
A.A. 2020-2021
83 pagine
1 download
SSD Ingegneria industriale e dell'informazione ING-IND/13 Meccanica applicata alle macchine

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher MarcoD97 di informazioni apprese con la frequenza delle lezioni di Mechanical System Dynamics e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Corradi Roberto.