Anteprima
Vedrai una selezione di 10 pagine su 114
Teoria - Dynamics of Mechanical Systems Pag. 1 Teoria - Dynamics of Mechanical Systems Pag. 2
Anteprima di 10 pagg. su 114.
Scarica il documento per vederlo tutto.
Teoria - Dynamics of Mechanical Systems Pag. 6
Anteprima di 10 pagg. su 114.
Scarica il documento per vederlo tutto.
Teoria - Dynamics of Mechanical Systems Pag. 11
Anteprima di 10 pagg. su 114.
Scarica il documento per vederlo tutto.
Teoria - Dynamics of Mechanical Systems Pag. 16
Anteprima di 10 pagg. su 114.
Scarica il documento per vederlo tutto.
Teoria - Dynamics of Mechanical Systems Pag. 21
Anteprima di 10 pagg. su 114.
Scarica il documento per vederlo tutto.
Teoria - Dynamics of Mechanical Systems Pag. 26
Anteprima di 10 pagg. su 114.
Scarica il documento per vederlo tutto.
Teoria - Dynamics of Mechanical Systems Pag. 31
Anteprima di 10 pagg. su 114.
Scarica il documento per vederlo tutto.
Teoria - Dynamics of Mechanical Systems Pag. 36
Anteprima di 10 pagg. su 114.
Scarica il documento per vederlo tutto.
Teoria - Dynamics of Mechanical Systems Pag. 41
1 su 114
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

Dynamics of Lumped Parameter Systems

mass, inertia, elasticity and damper divided

Equations of motion for a mechanical system

Let us consider a mechanical system having n degree of freedom (d.o.f.)

  • The equations of motion are a set of 2nd order differential equations in m unknowns represented by the system’s coordinate x.
  • With a standard mathematical treatment it is possible to end up into a set of 2n 1st order differential equations.

1.1. Newtonian Dynamics

F = m · ȧ approach based on “Newton’s second law”

  1. All forces applied to the point
  2. Acceleration of the point mass

F = m · ẍ

M0 = J0 · ω̇

  • Newton’s second law for a single rigid body in a planar motion
  • ẍ: acceleration of the centre of mass (C.O.M.) of the body
  • M0: moment of all forces acting on the body referred to a point O called the “centre”
  • J0: moment of inertia of the body w.r.t. the same point O
  • ω̇: angular velocity of the body

Example: 1 d.o.f. system

∑F = m · ẍ → F - Kx - cẋ = mẍ

mẍẍ + cẋ + Kx = F

2nd order differential equation (equation of motion of the system)

1.2. D'Alembert’s principle

Fin = -m · a Inertia force

Min = - Jω̇ Moment of inertia forces

Example:

Fed: kx mẍ

Ftd: cẋ R

Fin: mẍ

F - kx - ci - mẍ = φ

mẍ + cẋ + Kx = F

we end up with the same equation of motion

1.3. The principle of virtual work

It represents the movement of the system in the form of equilibrium equations.

∑δW = ∑δWe = φ for any virtual displacement

Under the assumption of non-dissipative constraints (constraint forces generate zero work, frictionless constraints and rolling without sliding condition)

  • The equation brings a set of m independent equations of motion (m d.o.f.)
  • (This equation not include any unknown constraint force)

Example:

Fδx - (kxcxẋmẍ) δx = φ

must hold for any value of virtual displacement

mẍ + cẋ + Kx = F

same equation again

Lagrange Equations

A different form of the principle of virtual work by using a special expression for the virtual work. (of some forces: conservative, dissipative and inertial, Lagrange equation valid as the d.o.f.)

1 D.O.F. EQUATION: d/dt (∂T/∂) - ∂T/∂x + ∂D/∂ + ∂V/∂x = Q

  • x: single independent coordinate
  • T: kinetic energy
  • D: dissipation function
  • V: potential energy
  • Q: Lagrangian component of all forces apart from conservative, dissipative and inertial ones. (elastic, viscous, inertial)

Q = δW/δx = δL/δx rate of virtual work and the infinitesimal variation of the independent variable x

EXAMPLE: T = 1/2 mv̇2 = 1/2 m ẋ2 V = 1/2 kx2 = 1/2 k x2 D = 1/2 c2 = 1/2 c ẋ2 Q = F δx/δx = F

m ẍ - ϕ + cẋ + kx = F → SAME EQUATION AGAIN

1.5. Example with many constraints

In this case, the use of the principle of virtual work or of Lagrange Equations provides substantial benefits when the system addressed is composed by a relatively large number of bodies, interconnected by constraints. Lagrange Equations provide a general procedure to write the equations of motion, that can be easily applied to a wide variety of systems.

SLIDER-CRANK MECHANISM α → independent coordinate l >> r => x1 = r cos(α) ; ẋ1 = -r sin(α) α̇ ẍ1 = -r sin(α) α̈ - r cos(α) α̇2

D'Alembert Principle:

This method brings us to a set of 3 unknowns in 3 equations (1 for motion, 2 for constraint forces)

Lagrange Equations: T = 1/2 J α̇2 + 1/2 m ẋ22 = 1/2 (J0 + mr2 sin2(α)) α̇2 D = ϕ V = ϕ δW = M δα + F Sx = (M - Fr sin(α)) δα => Q = δW/δα = M - Fr sin(α) Applying the Lagrange equation w.r.t. α

(J0 + mr2 sin2(α)) α̈ + (mr2 sin(α) cos(α) α̇2) α̈ = M - Fr sin(α) → NON LINEAR 2nd ORDER DIFFERENTIAL EQUATION

1.1. Linearization of the inertial terms

Expanding in series of power the generalized mass, m(x):

m(x) ≜ m(0) + dm/dx |0 x and substituting in m(x) ẍ

⇒ m(0) ẍ + dm/dx |0 x ẍ ≜ m(0) ẍ

Neglecting residual terms of second order

Generalized mass evaluated around the constant equilibrium position

NB: m(b) = Σi=15 (Msi msi(o) + Msi msi(o) + Ssi mse(o))

It may be obtained a priori by replacing the equilibrium position in the Jacobian functions

1.2. Linearization of the dissipative terms

Expanding in series of power the c(x):

c(x) ≜ c(0) + 2c/2x |0 x and substituting in c(x) ẋ

⇒ c(0) ẋ + 2c/2x x ≜ c(0) ẋ

Same as inertia terms, replace the steady state position in the c(x) function.

1.3. Linearization of the terms related to conservative forces

V(x) ≅ V(0) + ∂V/∂x |0 x + 2∂V/2∂x |0 |x2 V(0) + 1/2 K(0) x2∂V/∂x = Qc

V ≜ Vel + Vg

❍ Vel = 1/2 Ks ΔLs(x)

with ks stiffness of the s-th spring and ΔLs is the variation of length (also undeformed state that may be different from equilib.)

Qc,el = - ∂Vel /∂x

⇒ so we need to expand Vel in series power up to second order terms

ΔLs(x) = ΔLs(0) + ∂ΔL/∂x |0 x + 1/2 2∂ΔL/2∂x |0 x2 - ΔL ≜ 0 + λks(0) x + 1/2 Wks(0) x2

Substituting it in V(x) and neglecting all powers greater than 2:

Vel(x) ≈ 1/2 ks ΔLs x + ks λks(0) x + 1/2 ks λks(x) x2 + 1/2 ks ΔLse Wks(0) x21/2 KeR (0)

KeTOT = K(0)

KeR = φ

ΔLse = φ undeformed spring in the equilibrium position

width linear dL second derivative becomes φ ± φ

+ the Hessian is zero for all the values of x

Lesson 2

Solution of the equations of motion for linear 1 D.O.F and multi-D.O.F systems

We consider the equation of motion for a linear (or linearised) 1 d.o.f. system and we know that it takes the form of a linear, 2nd order differential equation with constant coefficients:

mẍ + cẋ + kx = F(t)

We assume m,c,k to be positive valued. The solution takes the form

x(t) = xg(t) + xp(t)

Particular solution -> with also the forcing effect (forced motion) added to the system

General solution (free motion) if it is an homogeneous equation

  1. 1 D.o.F. System

1.1 Free motion of the 1 d.o.f. system

We consider the homogeneous differential equation:

mẍ + cẋ + kx = ϕ

The xg(t) solution is a combination of 2 linearly independent solutions having the form:

xg(t) = X0 eλt

g(t) = λ2 X0 eλt

λ always positive

g(t) = λX0 eλt

X0 = ϕ trivial solution

λ2m + cλ + k λ1,2 = ϕ , λ1,2 = -c2m ± √((c/2m)2 - km)

Case 1

c = ϕ undamped system (pure idealization impossible in nature)

λ1,2 = ± iω with ω = √km

Complex conjugate

Constant and complex-valued

xg(t) = C1 e-ωit + C2 e+ωit

C1 = A + iB⁄2

C2 = A - iB⁄2

Alternatively

xg(t) = A cos(ωt) + B sen(ωt)

C cos(ωt + ϕp) with C = √A2 + B2

A = C cos(ϕ)

-ic i = 1

C = A cos(ωt) + B sen(ωt)

B = -Csen(ϕ)

-ic i = 1

ϕp = -tan-1(BA)

The motion is harmonic with circular frequency ω not depending upon the initial conditions applied and it is called natural frequency of the undamped 1 d.o.f. system.

Dettagli
Publisher
A.A. 2018-2019
114 pagine
1 download
SSD Ingegneria industriale e dell'informazione ING-IND/13 Meccanica applicata alle macchine

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Daedevils di informazioni apprese con la frequenza delle lezioni di Dynamics of mechanical systems e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Bruni Stefano.