Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
1. equation of motion
2. eigenfrequency, damping ratio
3. regime solution
4. FP FT (transmitted force to the ground)
-kx + cẋ - Mẍ + mẍ + mω2y0cosωt = 0
(M + m)ẍ + cẋ + kx = mω2y0cosωt
2)
(M + m)ẍ + cẋ + kx = 0
x = X0eλt
[(M + m)λ2 + cλ + k] X0eλt = 0
λ1,2 = —c/2(M + m) ± √(—c/2(M + m))2 — k/M + m
undamped λ1,2 = ± i √(k/M + m) = ± iω0
h = c/2(M + m)ω0
3)
h ≥ eλt
- x(t) = xs(t) + xp(t)
• b = 0
• c = 0
x0(t) = X0eλt
λ1,2 = ± iωn
- xs(t) = X0eiωnt + X0e—iωnt
- = Acosωnt + Bsinωnt
xs(t) = —A0sinωt + Bcosωt
• 0 < h < 1
λ1,2 = —c/2(M + m) ± √(—c/2(M + m))2 — k/M + m
= —hω0 ± i√(ω02 — (hω0)2)
Xg(t) = e-h1ω0t(X01 + Xceiω1t)
+ e-h2ω0t(A cos ω1t + B sin ω1t)
decrease over time damping effect
i h = i
λ1,2 = -ω0 ± i ω
Xg(t) = A e-hω0t + B eω01t
(A + B) e-iω1t
h > i :
λ1,2 = -1/2Mrm ± √(1/2Mrm) k/Mrm
X0(t) = X01 eω1t + X02 eλ2t
Xp(t) = Xt eiωtt
[-(Mrm) Ωe + i c Ω + k] eiωtt = mΩ2Xe eiωtt
= F0 eiωtt
1
XI = -Ω2(Mrm) + i Ω c + k = F0
_G(Ω0) F0 _
4)
R(Ω) = kx + Cuż reaction forces
j = G(Ω) F0 e-iωtt
(k + i C, Ω)
[m1 0] [x1] = [3k - 2k] [x1] Fe eiωt
[0 m] [x2] -2k 3k] [x1] Fe eiωt
Free vibration
[M] x + [R] x = 0
(-ω2 [M] + [R] x = 0
det [ ω2[M] + [R] x ] = Ø
(mω2-K mω2-sk) = Ø
ω12 k
m
ω22 sk
m
m1x1 + k1xi + 2x(k(x1-x2) = F1 eiωt
m2x2 + k2x2 = 2x(x1-x2) = F2 eiωt
section B
- MB = 0
- We know M = EJ ∂2w / ∂x2
- Wz to 5 sin(θ) = 0 small angle sinθ' ≈ θ' ≈ tan θ = ∂w/∂x
- Wz(x2, t) = Wz(x2, t)A = 0 same displacement at B
section C
string → still no constraint on rotation (can rotate even if the constraint is a clamp)
no displacement
- A2 cos(βL) + B2 sin(βL) = 0
collect all BCs in matrix form
X = 0 TRIVIAL SOLUTION
det [H(ωi)] = 0 we obtain ωi (i = 1, 2, 3, … ∞ ) NATURAL FREQUENCIES
substitute ωi back to the matrix [H(ωi)] X' = 0
arbitrary choose Ai = 1 , use ωi and rescale [H(ωi)] X = 0
N(ωi) = [H(ωi)(2:6, 1)]
both expressions are ok
- boundary conditions on section A
- BC in section B
section B
TxL + F0 eiωt - k h W3|x=L - [dW3/dt]x=L, 0 - Tx|x=L - me[dW1/dt]x=u = 0
Where TxL = ES [d³W1/dx³]x=L eiωt
3rd eq = iω[ A2 cos βx + ... ] + D2 sh βyx eiωt
[d²W2/dt²] = -ω² [ ... ] eiωt
F
- only appears in the sth BC (it is subjective, depends on the order of BCs)
X = [H(α)]⁻¹ F
H(α) X = F
2 possible conditions:
- b negligible (as previous cases)
- b not negligible (not ø)
w1(x, t) = An cos βx + Bn sin (βx) + Cn ch βx + Dn sh (βx) cos (ωt + φ)
w2(x2, t) = (An cos βx2 + Bn sin βx2 Cn ch βx2 + D2 sh β2) cos(ωt + φ)
Z(t) = Zc cos(ωt + φ) only in function of time single dof
4 unknowns ⟶ 9 boundary conditions
D = 1/2 q̇T [C]0 q̇ - 1/2 q̇T [C]S q
= 1/2 q̇T [C]I q̇
[C]S is diagonal ⟹ linear combination of [M] and [K]
[C]I not diagonal ⟹ concentrated damping introduces extradiagonal terms
Virtual work
δL = F0 eint δWe eext
Q = (δL/δq̇)T
We = δWe/δq̇ - Φ2T δq
Q = (F0 eext, Φn (0) )T
= δ Φn (0) F0 eext
Φn = Φn (0) F0 eext
Math: a scalar transposed is the scalar itself
Lagrange Equation
d/dt (δT/δq̇)T - (δT/δq)T + (δU/δq)T = Q
Math: if [A] symmetric [A]T = [A]
d2xT[A]x/dt2 = ẋT[A]ṫ + ẋT[A]ẋ
= 2ẋT[A]
δT/δq̇ = [M] q̇
d/dt δT/δq̇ = [M] q̈
δT/δq = 0 ⟹ linear system
δU/δq = [C] q̇ ⟹ assuming [C] diagonal (neglecting extradiagonal terms)
δU/δq = [K] q
eom: [M] q̈ + [C] q̇ + [K] q = Q
mii q̈i + Ci q̇i + kii q = Qi ⟹ single DoF system
qi(t) = W(x,t) = Φ(x) Q(t)
known vector corresponding to the nth mode
convert it back to physical coordinates
different frequencies between the distributed load and the columns of winds
W1(x1, t) = [A1cos j1x + B1sin j1x + C1ch j1x + D1sh j1x] cos (wt+ϕ)
W2(x2, t) = [A2cos j2x + B2sin j2x + C2ch j2x + D2sh j2x] cos (wt+ϕ)
γ'' = m/EJ ω² same for both beams
section A
- W1|x1=0 = 0
- MAv = 0
- EJ ∂W1/∂x²|x=x1=0 = 0
section B
- W1|x=L = W2|x=x2=0
- ∂W1/∂x|x=L = ∂W2/∂x|x=x2=0
- TBar TBr - mB.(w2) (L)∂W2/∂x|x=x2=0 - kW2|x=x2=0 = 0
- MBr - MBe - JC ∂²W2/∂t∂x|x=x2=0 = 0
section C
- W2|x2=L = 0
- -MCe|x2=L = 0
- -EJ ∂W2/∂x²|x2=L = 0
[H(w)] ξ = 0
det [H(w)] = 0 → ωn n = 1, 2, ... ∞ → ϕn
discretization of the system Wnm → Ωnm Ωmax = 2 Ω
W1(x1, t) = [Φx(1) Qi(t)]
W2(x2, t) = [Φx(2) Qi(t)]
Φ =Φ₁(1)/Φ₁(2)Φ₂(1)/Φ₂(2)Φ₃(1)/Φ₃(2)... NMx1Q₁/Q₂/QMx1