Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
MECHANICAL SYSTEM DYNAMICS
F = kΔl
F = c dΔl/dt
mẍ + cẋ + kx = F(t)
mẍ + cẋ + kx = 0
x(t) = X0 eλt
ẋ(t) = λ X0 eλt
ẍ(t) = λ2 X0 eλt
mλ2 X0 eλt + c λ X0 eλt + k X0 eλt = 0
(mλ2 + cλ + k) X0 eλt = 0
λ2 m + λc + k = 0
λ1,2 = c/2m ± √(c/2m)2 - k/m
ASSUME c = 0 → NO DAMPING
λ1,2 = ± √-k/m = ± i √k/m = ± i ω0
mẍ + kx = 0
X(t) → Xω₀ eiω₀t + Xω₀ e-iω₀t
ω0 = √k/m [rad/s]
F0 = ω0/2π [Hz]
X(t) → Xω₁ e-iωot + Xω₂ e-iωot
x(t) = (a + ib) eiωt + (a - ib) e-iωt
= (a + ib) (cos ωt + i sin ωt) + (a - ib) (cos ωt - i sin ωt) = 2a cos ωt - 2b sin ωt
A cos ωt + B sin ωt
apply initial/border conditions
x(0) = X0 ⇒ A cos ωt + B sin ωt → x(0) = A
ẋ(0) = V0 ⇒ Aω0 sin ωt + Bω0 cos ωt → ẋ(0) = Bω0
A = X0
B = V0 / ω0
x(t) = X0 cos ωt + V0 / ω0 sin ωt
if x(0) = X0, ẋ(0) = 0 → x(t) = X0 cos ωt
continuous transfer of energy between kinetic and potential
x0
t
T0 = 2π / ω0 OSCILLATION PERIOD
λ1,2 = C / 2m ± √(C / 2m)2 − k / m
assume C > 0, - (k / m) < 0
[C / 2m] [± ω0] [C / 2m] [− ω02] < 0
[C / 2m] ω0 > 0
C / 2m < ω0
C / 2mω0 < 1
2mω0 CRITICAL DAMPING [N S / m]
C / Ccrit DAMPING RATIO
if damping ratio is lower than 1
λ1,2 = -C / 2m ± i √ (ω02 − (C / 2m)2)
Eigenvector describes how the system oscillates at a given frequency (as a ratio between coordinates values)
δ(t) = C11 X01 eiω1t + C21 X02 eiω1t + C12 X01 eiω2t + C22 X02 eiω2t + ...
X(t) = | X01 C11 C12 eiω1t + C21 C22 eiω1t + ...
X(t) = X01 (A1 cos ω1t + B1 sin ω1t) + X02 (A2 cos ω2t + B2 sin ω2t) + ...
X(t) = ∑j=1s X0j (Aj cos ωjt + Bj sin ωjt)
Free motion = combination of eigenmodes - constants can be obtained by applying initial conditions
String element
∑F⃗ = m a⃗
-T sin α + T sin (α + dα) = m dx ¨W (vertical acceleration)
-Tα + T (α + dα) = m dx ¨W
T dα = m dx ¨W
α ≈ tan α ≈ δW/δx → δα ≈ δ2W/δx2 dx
T δ2W/δx2 = m δ2W/δt2
δ2W/δt2 = (T/m) δ2W/δx2 (valid only with no external forces)
kg/m = mass per unit length
mass = m . dx [kg/m]
(m/s2) / (kg/m) = speed2
δ2W/δt2 = c2 δ2W/δx2 (wave speed propagation squared)
δ²W
δt² = α(x) β(t)
∫0W
0W x⁴ = αʺ(x) β(t)
αʺ(x) β(t) EJ = α(x) β(t)
αʺ(x)
P(x) δ(x) m
β(t) P(t) = const. = -ω²
β̋(t) + ω² β(t) = 0
P(t) + ω² β(t) = 0
β(t): A cos t + B sin t
= C cos (ωt + ϕ)
αʺ(x) EJ m = -ω² α(x) = 0
αʺ(x) = m ω² α(x) = 0
αʺ(x) - γ² α(x) = 0
with γ² = mω² EJ
α(x) = c1 eγx
c2 e-γx
α(x) = α r -
αʺe - γ²
αʺ e-γ - αe γ²
- e-γ α
γ² = -λ²
λ² = γ² → λre = ±γ
α(x) = αi3 eiγx
+ αl3 eiγx
+ αl4 e-iγx
A cos γx + B sin γx
ch (γx) = eγx e - e
2 hyperbolic cosine
sh (γx) = eγx e - e
2 hyperbolic sine
sh (x) = eγx
α(x) = A cos γx + B sin γ x + C
2 + D sh γx
- D 2 = -βαx
most general solution possible
α''(x) + ωL2 α(x) = 0
U(x,t) = A cos (ωL/c x) + B sin (ωL/c x)
α(x) = A cos (ωL/c x) + B sin (ωL/c x)
C is multiplied into the previous A and B
u(0,t) = 0
A = 0
u(L,t) = 0
B sin (ωL/c) = 0
→ Trivial solution
ωL/c = kπ k = 1,2,...
ωk = kπ/L c = kπ/L √(E/ρ)
Uk(x,t) = (Bk sin (kπ/L x)) cos (ωk t + ϕk)
k = 1 ω1 = π/L √(E/ρ)
k = 2 ω2 = 2π/L √(E/ρ)
When ux(x,t) rises ↗ have TRACTION forces
↓ ux(x,t) decreases ↘ have COMPRESSION forces
u(x,t) = (A cos (ωL/c) + B sin (ωL/c)) cos (ωt + ϕ)
No constraints
N(0) = 0
N(L) = 0
N = EA ∂u/∂x
∂u/∂x = (-ωL/c A sin (ωL/c) + ωL/c B cos (ωL/c x)) cos (ωt + ϕ)
N(0) = 0 -> B = 0
N(L) = 0
A =0 trivial solution
ωL/c = kπ k = 1, 2, ...
→ ωk = kπ/L c
U(x,t) = (Ak cos (ωk/c x)) cos (ωk t + ϕk )
k = 1
ωk = π/L c
GENERAL SOLUTION
V. = 1/2 ∫0L qⱼ,x x qⱼ,xT EJ I dx
Vi = 1/2 ∫0L q,xT K q,x dx, [K] stiffness matrix
kij = ∫0L sin iπx/L x sin jπx/L x EJ x (iπ/L)2 dx
k₁ⱼ = 0, j ≠ 1
qⱼ, mi
⋮
ϕk = sin kπx/L
Φk = cos kπ/L
Φk = -sin kπ/L
[A] ∫cb ϕi(x)m(x)ϕj(x)dx
∫cb ϕi(x)m(x)ϕk(x)dx
mij = ∫0L Φi (m) mi Φj(x) dx ⋯ condition
mij = 0 i ≠ j
mij ≠ 0 i = j pinned-pinned beam ∫0L sin iπ/L x m sin jπ/L
kij = ∫0L Φi(x) EJ Φj(x) dx
kij = 0 i ≠ j
kij ≠ 0 i = 0 pinned-pinned beam ∫(iπ/L) ( sin iπ/L x ) x EJ dx x (iπ/L) EJ L/2
k₁ = (π/L)4 EJ L/2
k₂₂ = 16(π/2)4 EJ L/2
k₃ = (1/L)4 EJ L/2
hi = 1/2 m L ωi2 x 1%
r. 2 m L ωi hi ⋯
(ωi) q(→){[x]}[rx]
(ωi) q(→{[x]}[rx]) q = 0
(ωi)/mi = √(in iπ/L)
EJ / L/2 m L = (2/L)4[EJ/m]