Anteprima
Vedrai una selezione di 10 pagine su 240
Appunti di Modeling of space structures notes (Space structures) Pag. 1 Appunti di Modeling of space structures notes (Space structures) Pag. 2
Anteprima di 10 pagg. su 240.
Scarica il documento per vederlo tutto.
Appunti di Modeling of space structures notes (Space structures) Pag. 6
Anteprima di 10 pagg. su 240.
Scarica il documento per vederlo tutto.
Appunti di Modeling of space structures notes (Space structures) Pag. 11
Anteprima di 10 pagg. su 240.
Scarica il documento per vederlo tutto.
Appunti di Modeling of space structures notes (Space structures) Pag. 16
Anteprima di 10 pagg. su 240.
Scarica il documento per vederlo tutto.
Appunti di Modeling of space structures notes (Space structures) Pag. 21
Anteprima di 10 pagg. su 240.
Scarica il documento per vederlo tutto.
Appunti di Modeling of space structures notes (Space structures) Pag. 26
Anteprima di 10 pagg. su 240.
Scarica il documento per vederlo tutto.
Appunti di Modeling of space structures notes (Space structures) Pag. 31
Anteprima di 10 pagg. su 240.
Scarica il documento per vederlo tutto.
Appunti di Modeling of space structures notes (Space structures) Pag. 36
Anteprima di 10 pagg. su 240.
Scarica il documento per vederlo tutto.
Appunti di Modeling of space structures notes (Space structures) Pag. 41
1 su 240
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

[SPACE STRUCTURES]

MODELING ON SPACE STRUCTURES

NOTATION

VECTORS

A vector is associated with a no of components and the set of a base.

V = V1 E1 + V2 E2 + V3 E3 in 3D Space

Vec Ci : i = 1,2,3 ➔ Vectors

They build up an orthonormal base

ORTHOGONAL ➔ C1 ⋅ C2 = 0

C1 ⋅ C3 = 0

C2 ⋅ C3 = 0

NORMAL ➔ C1 ⋅ C1 = 1

Since they’re properly normalized

V = ∑i=13 Vi Ci = Vi Ci

∑ EINSTEIN NOTATION

RMK Whenever an index is repeated then there is a summation implicit

Vi Ci ➔ no ∑

Vm Cn ➔ ∑

RMK The letter used as index is not important, it's the relative position that matters → it's possible to rename indices but never change the positions.

RMK The bounds of the Σ are expressed only if there is ambiguity, and they are not important in the context.

RMK ve1 → component

V = V·c1

→ V = V·e1

The components are the projection of V onto the basis, if we change the orthonormal basis also the components will be → BUT the vector doesn't change since it's independent from the choice of the reference system.

V ⇒ standard vector

doesn't depend on reference system

{V} = V =

Mistake vectr

depends on the reference system

V1 V2 V3

When we formulate a physical pb we don't want to be dependent on the reference system.

SCALAR PRODUCT

u·v = w where

vector

scalar

w = ||u||·||v|| cosΘ

VOIGT NOTATION

In this representation we represent 2nd order tensors rearranging them into vectors (6x1) & 4th order tensors of matrixes (6x6), (even if they are not).

  • ̅ = [11 22 33 23 13 12]
  • ̅ = [11 22 33 23 13 12]

w̅here 13 = 213 23 = 223 so we can write = 1/2 (̅ : ̅ = 1/2 (T : = 1/2 '( : )

⧉⧉⧉

= Voigt =>

⧇ ⧇ ⧇ = [C] [B̅] secuript - matrix

GRADIENT AND DIVERGENCE

GRADIENT

grad(•) = (•),i ⊗ ei

where i indicates the derivative respect to i. Eg given a vector ⦈ ➝ grad ℕ = grad (⦈,i ei) = ℕ,i ei ⊗ ej RRM The gradient RISES UP the order of the object

DIVERGENCE

div(•) = (•),i • ei

Given a vector M ➝ div m = div (mi ei) = mi,i ei • ei = = M,11 + M,22 + M,33 RRM Divergence LOWERS the order of the object.

PROBLEM FORMULATION

SF

We have

S = SF ∪ SO

SF ∩ SO = ∅

GF → region where we prescribe the forces

GO → region where we prescribe the displacements

SE = SF ∪ SO → means that where we don’t prescribe displacements we prescribe forces. Indeed we can see the portions of the surface with no implementation of displacements or forces as a region where we prescribe zero force so Γ = SF.

SE ∩ SO = ∅ means that it is impossible to prescribe both a force and a displacement because they are not unrelated and so if we fix the force there will be only one value of displacement obtained and vice versa.

If we want a certain displacement we will have to apply a specific force.

We have to solve:

  1. GEOMETRATION
  2. COMPARTORIZING
  3. CONSTITUTIVE RELATION
  4. BOUNDARY CONDITIONS

RMK Over the boundary u = uu and Su.

Introducing a virtual variation -> u + Su = uu into Su.

unperturbed perturbation

But since u = uu must be valid in Su -> δu = 0 in Su.

So -> * = ∫SF Su . t dsF - ∫V εik σik dV = *.

Let’s now introduce

V εik σik = 1/2 (Suik + ∑uik) σik = 1/2 ∑ Mik σik + 1/2 (Suik σik.t).

= 1/2 ∑ uik σik - 1/2 δuik σik = 1/8 Muik - δm.

can have the law of

this vector after

<= both always in

otherwise

...the relative rotation

Instead he respects this

= σik. 1/2 (δuik + ∑ uik).

= Cik δ Σik.

λ 1

δΣik from the definition of

strain tensor

=> * = ∫SF Su . t dlSF - ∫V d ε . σ dlV.

Let’s see now it the initial expression of the pb:

V (δu - β ε . σ) dV - ∫SF ε Mi dlSF - ∫SF ε . 7 dlSF -> ∫SF ε . 7 ds = 0.

=>

V ε . σ dV = ∫V Su1 . f dV + ∫SF SuM . 7 dlSF, ∀ ε

PRINCIPLES OF VIRTUAL WORKS

If we consider the external work we have:

∂We = -∂V with V = potential of the external loads

So substituting in the PCW:

∂Wi = ∂We => ∂U = -∂V => ∂(U + V) = 0

Def (total potential energy) => Ṽ = U + V

=> ∂Ṽ = 0

Minimum potential energy theorem

We have equilibrium when ∂Ṽ = 0 so the observed extreme values (max or min) we can prove it happens when it's a minimum.

Now we can summate these two contributions back to the total PLS and so we get Timoshenko's kinematic model:

  • Timoshenko's kinematic model
  • U(x,z) = U0(x) + zφx
  • W(x,z) = W0(x)

M0, V0, φx → Generalized displacement components (e.g. the 2 displacements and a rotation)

Remark (linearization of the rotation)

Let's consider the portion of the beam dx

  • Before
  • After

dl cos θ = dx

dl sin θ ≈ dw

→ dw = θ dx = tan-1 f' = this explains why the sign f0 1 v0

Remark

We can see the expansion U(x,z)= U0(x) + zφx is a 1st order Taylor expansion

We could also have a higher order expansion, for example:

U(x,z,t) = U0(x) + zφx(x) + z2φ0 x + z3φx(x) + ...

The quantities φx and Vx have no physical meaning, but they are still generalized displacement components

We now substitute in this expression the identity

= ∫e (δNox + δQxx + δVoz)dx

So δWe = ∫e (δNox + δQxx + δVoz) dx

Where:

ûx = ∫A Fx dA -> axial force per unit length

= ∫A zFx dA -> bending moment per unit length

Vz = ∫A Fz dA -> shear force per unit length

EQUILIBRIUM CONDITIONS

Now we impose the satisfaction of equilibrium by noting use of the PTW

(dev ∂ + δw e) -> stays for fn, en dn is so big

Since it's difficult working with the stays for use with PTW (weak form)

Dettagli
Publisher
A.A. 2019-2020
240 pagine
SSD Ingegneria industriale e dell'informazione ING-IND/04 Costruzioni e strutture aerospaziali

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher leonardoperi di informazioni apprese con la frequenza delle lezioni di Space structures e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Vescovini Riccardo.