Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
DYNAMICS OF SPACE STRUCTURES
Deterministic vs NON-det. Function
ex. sin(ωt) ex. Random f
INTRO EXAMPLE
Hp: RIGID body
1° METHOD
∑ θ̈(t) = Md(t) (From fund. Law of rot. dyn.)
ODE II ord. with CONST coeff.
θ̈ = dθ̇/dt
=> θ = (1/s) ∫ Md dt
2° METHOD
Θ(t) → Θ(s) = ∫0∞ θ̈(t) est dt
θ̈(t) → sΘ(s) - sΘ(0) - Θ(0)
Md(t) → Md(s)
∑ θ̈(t) = Md → s2 ∑ Θ(s) = Md(s)
Frequency description approach
I can demonstrate this property with INT. P.P.
Algebraic Eq.
Θ(s) = 1/s · 1/s2 M0(s)
Bode diagrams
s = jω
HR(s) = 1/s · 1/s2
Transfer function
HP:
s = jω
40
dB!!!
Rolloff rate (per decade) = -40 dB
or
-2 (relating to the exponent)
MASS EFFECT
ω ↑
apparent mass ↑ (seen from fr. approach)
From freq. POV
THINK
H(jω)
SORT OF INERTIA MASS EFFECT
ω
WARNING!
M0 value to be taken into account
be careful
Now
EXAMPLES OF DANGEROUS PHEN.
- Sloshing
- Thermal eff
- ...
GOLDEN RULES
- Short in time => large in freq ; short in freq => large in time
- Separation of frequency
- Rule of thumb: 1 decade of separation (from ωres)
EXAMPLE
Let's introduce internal instruments: how they transmit vibrations to the structure? How all behave?
2 OPTIONS
- integrated model (expensive option)
- Keep the equipment separated, measure Fj, see how Fj interacts with structure
Equipment
(standalone)
me üe(t) + ke ue(t) = F(t)
Fe(t) = ke ue(t)
s2 me ue(s) + ke ue(s) = F(s)
ue = \frac{1}{s^2 me + ke} F(s)
Fe(s) = \frac{ke}{s^2 me + ke} F(s)
He(s)
we = \sqrt{\frac{ke}{me}}
E∫(x) = E∫
m(x) = x
E∫ wxxxx + m ü = 0
w(x, t) = W(x) T(t)
Technique: separation of variables (to solve particular PDE)
E∫ Wxxxx T + m W T̈ = 0
f(t) f(x) => f(t) = F(x) = CONST (the only possibility that a fcn of x can be equal to a fcn of t)
Ẍ̈ T = E∫ Wxxxx
E∫ Wxxxx W - ω2 = E∫ Wxxxx - mω2W = 0
IN GENERAL, WE'LL ASSUME
w(x,t) = W(x)ejωt
Continuing with E∫, m const
E∫ Wxxxx - mω2W = 0
Wxxxx - β4 W = 0
K [W(x)] - ω2 M [W(x)] = 0
ESWxxxx - mω2W = 0
Now, instead,
Mu(t) + Ku(t) = 0
u(t) = yejωt
=> (K - ω2M)y = 0
Wxxxx - β4W = 0
β4 = mω2 / ES
W = A cos βx + B sin βx + C cosh βx + D sinh βx
I still don't have used BCs
I have to specify A, B, C, D (From BCs)
det(...) = 0 (enforcing non trivial solution)
characteristic (or frequency) equation
f(βL) = 0
ωi, Wi(x)
first eigenpair
det(y) = 0
cos β L cosh β L - 1 = 0
(i = 1, 2, ..., ∞)
Wi(x) = Ai [sin βi x + sinh βi x : sin βi L - sinh βi L
cos βi L - cosh βi L (cos βi x + cosh βi x)]
Free-Free Beam
Axial Case
- ∫0l δu E A ux dx = - ∫0l δu m ü dx
- by P
- δu E A ux |0l - ∫0l δu (E A ux)x dx = - ∫0l δu m ü dx =>
{ - (E A ux)x + m ü = 0 (EoM)
E A ux (0) = 0
E A ux (l) = 0 (BCs)
Hp.
E A (x) = E A
m (x) = m =>
{ - E A uxx + m ü 0
ux (0) = 0
Ex.
Exact analysis
Dofs: ∞ + 1
virtual work
relative displ. (of the endpoints of the spring)
EOM - beam
EOM - spring/mass
substituted weak form
BCs
Note: this time we have 2 EOM
Note: SAME ω (of the entire system)
NO DEPENDANCE FROM x
δy₀ = ∫ (IₚN₀ₓN₀₀ dx + ∫ me²N₀ₓN₀₀ dx) 0L ẏ₀(t) +
+ ∫ N₀w(t)N₀WSW0(t) L0 ẏ₀(t) + G ∫ N₀N₀ dx ẏ₀(t) = 0
Mww ÿw(t) + Mw₀ ÿ₀(t) + kww yw(t) = 0
Mow ÿw(t) + Moo ÿ₀(t) + koo y₀(t) = 0
y = ( yw(t) y₀(t) )
=> M ** ÿ(t) + K y(t) = 0
yi(t) = yiejωt
(K - ω²M) u = 0
det ( ) = 0 => ωi² ; yi
M = ( Mww Mw₀ )
( Mow Moo )
K = ( kww 0 )
( 0 koo )
note that Mwo = MTow
If the distance btw the 2 axis -> 0
(>) problems decoupled
∑j Φi(x) ∫[Φz(x)qz(t)dρqz(t) + Φi(x)q0(x)dF(t)]
= Φi(x) p0(x)dρF(t)
(i = 1, 2, ..., ∞)
∑ μiqi(t) + μiωz2qi(t) = Φi(x)p0(x)dρF(t)
i = 1, 2, ..., ∞
easier than before
ODE oscillators
simple example
EJ, m,l
ρ9step(t)
w(x,0)=0
ω̇(x,0)=0
begin at rest at initial time
EJ(1) = EJ
m(x) = m
ω(x,t) = ∑ sin(πx/l) qs(t)
d(x,t) = ∑ ϕi(x)q9(t)
q̇i(t) = -ωiAisin(ωit) + ωiBicos(ωit)
q̇i(0) : o ⇒ Bi : o
qi(0) = o ⇒ Ai :
qi(0) = o ⇒ Ai:
=> qi(t) = 4po/ωil²> [1-cos(ωit)]
t > 0
i = 1, 3, 5,...∞
ωi² = E3/po(iL)⁴
...
ω(x,t) = ∑i=1,3,5... sin(iπx/L) qi(t)
= 4poL/E3π⁵ ∑i=1,3,5... 1/i3 sin(iπx/L) [1-cos(ωit)]
...
M(x,t) = E3 ωxxx(x,t)
...
T(x,t) = - 4poL2/u2 ∑i=1,2 cos(iπx/l) [1-cosωit]
...
so, if we want
a) ω(x,t)
= 4poL/E3π5 ∑i=1,3,5... 1/i3 sin(iπx/L) [1-cos(ωit)]
...
HIGHER MODES (ωi) => have decreasingly... to ω(x,t)