Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
Curved Beams and Parabolic Arch
In the end, substituting in the equation of σ we get:
θ R R N M M N M− − − −σ = E ε = E y =(η y χ) = y + yθ θ 2R + y R + y A A R I AR A RR R N R + y M R + y M N M M Ry− − − −= y =R + y A R AR R I A A R I R + yR R
We can see that σ has a non-linear pattern as ε .θ θ2.
1. Parabolic Arch
Let us study the parabolic arch in the figure:
We call f the maximum height of the arch. The analytic equation of the beam is: 2z z −y = 4 f +l l
Since the system is one time redundant we will make it isostatic and we add a redundant actionX.
The inclination α is: 4 fdy − −= (2 z l)tan α = 2dz l
Theory of Structures 212. Curved beams 2.1. Parabolic arch
Doing equilibrium we get: N l0− −→ −N cos
α T sin α = 0 T = = pz p cos α0 0 0 tan α 2 l 1 l− −→ −N sin α + T cos α = p z p N tan α + T = pz p0 0 0 02 cos α 2 N 1 1 l0−→ −N tan α + = N tan α + = pz p0 0tan α tan α cos α 2 1tan α l l−→ − −N = pz p = pz p sin α0 2 cos α 2 2tan α + 1pl p 2−M = z z0 2 2In “system 1” we get: −→ −NN sin α + T cos α = 0 T = tan α = sin α1 1 1 1 112 −−→ −− −1 −→ − = cos αN =N cos α T sin α = N + N tan α = 11 1 1 1 2 cos α cos α 1 + tan α−yM =1The internal work is:ZL = (N η + T t + M χ) ds =i 1 1 1s Z N + X N T + X T N + X NM + X MR0 R1 0 1 R0 R10 1 −= N + T ds+ M1 1 1EA G A E I E ARR RsWhere: M I R∗−N = N A = A +R R 2R ROnce we know the internal workwe make several approximations to get the solution for X:
- −→ ≃if h/R < 0.25 I IR
- MN , χ =if h/R < 0.10 we can assume the same constitutive law for straight beams
- η = E A EITand t = ∗G A
- →if our arch is slender enough, shear strain is negligible t = 0
- ≃if α is small we can neglect N (sin α 0)
- IA and I = because this is the only way to obtain an analyticalwe assume A = 0 0cos α
The internal work reads: ls ZZ X N M + X M X N M + X M dz1 0 1 1 0 1L = N + M ds = N + M =i 1 1 1 1E A E I E A E I cos α0 0l l 2 Z ZX N M + X M cos α y pl p X1 0 1 2 2− −= N + M dz = X z z + y dz1 1E A E I E A E I 2 2 E I0 0 0 0 00 0
Let us analyze the three components of the integral separately: ll l l 2 Z Z Z1 1 l 4 f2 − −cos α dz = arctan (2 z l) =dz = dz =2 2 28 f l1 + tan α h i4 f0 0 0 − − 01 + (2 z l)2l2 l 4 f ≃= arctan l4 f
Theory of Structures 222. Curved beams
2.1. Parabolic arch
Doing this approximation if f /l < 0.1 the error is of the 5% and if f /l < 0.2 the error is of the 15%.
ll 4 5 33 Z 2 z z p l fpl p z2 − −−y − + =z dz = 2 p l f 2 3 42 2 3 l 4 l 5 l 150 0ll 2 5 4 2 3 2 Z 16 f z 2 l z l z 8 f l2 −y dz = + =4l 5 4 3 150 0
The principle of virtual work gives us:
2 2 3 1 l 4 f 1 8 f l p l f−X arctan + =0E A 4 f l E I 15 15 E I0 0 0pl 1X = = plh i 8 f8 f [1 + ξ]I l151 + 0 l3l 32 A f0 2A l2
We define the slenderness of the arch as λ = :0I 02 15 l l1 4 fξ = arctan2 28 λ f 4 f l
Figure 2.5: Variation of X with f /l and λ
Looking at the graph on the left we can see that for increasing values of f /l the unknown X tends2p l → →to and for f /l 0 also X 0. Looking at the graph on the right we can see that the8 fmaximum shifts towards left for increasing values of λ.−→ ≃λ = 69 X 3.13 p
lmax→ ≃λ = 52 X 2.35 p lmax→ ≃λ = 35 X 1.55 p lmax→ ≃λ = 28 X 1.24 p lmaxThe total bending moment is: 2 2 2 22 z z pl z z p l z z ξp l − − − −4 f =M = M + X M =0 1 8 f2 2 22 l l l l 2 l l 1+ ξ(1 + ξ)lThe maximum bending moment in our arch is: 2p l ξM =max 8 1+ ξTheory of Structures 232. Curved beams 2.2. Circular beamFigure 2.6: Variation of M with f /l and λmax2.2 Circular beamHaving a circular beam we immediately know that the radius of curvature is constant and equalto R. We assume that the beam is slender:• d u u d u u≃ −→ −→ −axial deformations are negligible η 0 + = 0 =s r s rds R ds R• d u u d u u≃ −→ − − −→ −shear deformations are negligible t 0 φ = 0 φ =r s r sds R ds RThe curvature is therefore: 2 2dφ d u 1 d u d u ur s r r−χ = = = +2 2 2ds ds R ds ds RThisis the differential governing equation of the problem. We need 4 boundary conditions and we start observing that we can exploit the double symmetry of the problem
The bending moment is: P P s M (s) = X + R sin α = X + R sin2 2 R
The differential equation is: 2 d u u M 1 P sr r+ = χ = = X + R sin2 2ds R E I E I 2 RR R2 2 2
Since s = R α we can say that ds = R dα :2 2 2 d u 1 P d u R P1 r r−→+ u = X + R sin α + u = X + R sin αr r2 2 2R dα E I 2 dα E I 2R R
The solution for this differential equation is: 2 3X R P R−u = A cos α + B sin α + α cos αr E I 4 E IR R
The boundary conditions are u (0) = 0, u (π/2) = 0, φ(0) = 0 and φ(π/2) = 0.
s sZd u ud u s rs − −→ −= = u = u dαs rds R dα R α 32 P RX R−A − α + (α sin α + cos α) + C
= sin α + B cos αs E I 4 E IR R2 3 dφ d u 1 P R1 r −A −+ u = cos α B sin α += (2 sin α + α cos α) + A cos α+r2 2 2ds R dα R 4 E I R2 3 X R P R X PR−+B sin α + α cos α = + sin αE I 4 E I E I 2 E IR R R R2Z PR XR P R CX − −φ = + R dα = α cos αE I 2 E I E I 2 E I RR R R RαSubstituting boundary conditions we have: 33 P RP R −→+ C B =u (0) = 0 = B +s 4 E I 4 E IR R2 3 3X R P R P Rπ π π−A − −→u (π/2) = 0 = + + C A =s E I 2 4 E I 2 E I 8R R R2 3P R C P R− − −→ −φ(0) = 0 = C =2 E I R 2 E IR RXR C PRπ − −→ −φ(π/2) = 0 = X =E I 2 R πRIn the end the solution is: 3 1 X αP R π − −cos α + sin α cos αu =r E I 8 4 π 4R3 P R 1 α α 1π −−u = sin α + cos α + + sin αs
E I 8 2 π 4 2R2 P R α 1 1− −φ = cos α +E I π 2 2R Theory of Structures 253 Theory of plates A plate is a bidimensional body with a thickness t which is usually constant, but it may vary, which is loaded on the surface by external forces. We define the curvilinear coordinate s as the coordinate which describes the boundary of the plate. In describing plate behaviour we see two main theories: Kirchhoff-Love model and Mindlin-Reissner model. The difference between the two consists in considering shear strain.
3.1 Mindlin-Reissner model
In this model we consider shear strain in order to have the more general plate theory we can have. The main hypothesis is: any segment orthogonal to the mid surface of the plate remains straight and undeformed after the process. Since plates are bodies in the tridimensional space we define the 3 axis x, y and z and we call u, v and w the 3 components of displacement in the space. We also define the