Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
Scarica il documento per vederlo tutto.
vuoi
o PayPal
tutte le volte che vuoi
REVISION OF St. VENANT PROBLEM
The St. Venant's problem regards the definition of the stress and displacement field in an elastic beam w/ a rectilinear axis and subjected to actions applied only to the extreme sections
- Hypothesis:
- small strains & displacements
- linear elastic homogeneous material
- long beam w/ a constant cross section
- free body in the space (no kinematic constraints)
- no body forces acting on the body, F=0
- no surface forces on : f=0
- loads act only on the extreme sections
- Reference system: it is located in the centroid of one of the extreme section and it is characterized by having:
- Sx=aqn∫ y dA = 0
- Sy=aqn∫ x dA = 0
- Ix=aqn∫ y2 dA
- Iy=aqn∫ x2 dA
- it is a PRINCIPAL REFERENCE SYSTEM
- since we have Fo on V and fo on M the only acting force is the SURFACE FORCE P acting on the EXTERNAL BASES and it must be SELF-EQUILIBRATED (since there are no constraints)
- NOTE the distribution of P is not specified BTW the St Venant prob ensures that at a certain distance from the sections the solution depends only on the ACTIONS RESULTANTS (this is why the rod must be sufficiently long)
- The INTERNAL ACTIONS which defines the stress resultants are defined as:
- Nx: ∫A σx dA
- Tx: ∫A τxz dA, Ty: ∫A τyz dA
- Hx: ∫A σx y dA, Hy: ∫A σx x dA
- Mt: Tx y + Ty x = ∫A (τyz x - τxz y) dA
4) SHEAR
* The solution of the problem is found adopting a "SEMI-INVERSE APPROACH" that means making some preliminary assumption on the stress/displacements and verify it at the end of the computations
- the rigid displacement can be eliminated by imposing the following NORMALIZATION
∫A ψG(x,y)dA = 0
as a consequence
∫A ψ dA / A = Sz = 0 average displacement
- now the SOLUTION IS UNIQUE and the warping function ψG depends only on the CROSS SECTION SHAPE
- The TWIST B can be computed by exploiting the equilibrium on the basis
Mt = ∫A(τyzz - τxzy)dA
= ∫A[GB(∂ψG/∂y + x)z - GB(∂ψG/∂x + y)y]dA
= -GB ∫A(∂ψG/∂y z - ∂ψG/∂x y + x2 + y2)dA
J = [...]
J is the TORSIONAL INERTIA of the section and it depends only on the GEOMETRY OF THE CROSS SECTION
Mt = GBJ
-> β = Mt / GJ
➔ if we refer the rotation to the centre of torsion then it is possible to DECOUPLE the problem of torsion from the problem of shear and bending
➔ the CENTRE of TORSION coincides with the CENTRE of SHEAR (if we apply the shear force in this point then there is no torsional rotation)
check of the governing equation
- equilibrium:
- ∂xz/∂ + ∂yz/∂ = 0 in A
- + = 0
- compatibility:
- ∂yz/∂ - ∂xz/∂ = 2G
K = 2G
boundary condition
- xz: nx + yz ny = 0
- 0·1 + 2G·0·0 = 0 OK
- 0·0 + 2G·x·1 = 0 NO
- 0·(-1) + 2G·x·0 = 0 OK
- 0·0 + 2G·(-1) = 0 NO
! there is a violation of the boundary condition BUT since b q3 = q1 - q2 -> CONSTANT along the common branch
* so we have:
- q1 = const in loop 1 (not in the common branch)
- q2 = const in loop 2 ("")
- q3 = q1 - q2 in the common branch
{
∫J2q'*b ds - q1z∫J2dSverizb = -2L2GB
∫J2q'*dS - q1z∫J2dSverizb = -2L2GB
* We have 3 unknowns (q1, q2, β) W/ 3 equations
REMARKS:
- the position of the cuts are arbitrary, the only condition is 1 cut for loop
- q1, q2, q'* depends on the chosen cut BUT the final result q and β must be equal # choice
SHEAR CENTRE POSITION
- * Def. SHEAR CENTRE: is that specific point where if you apply the shear force there would be torsional moment
- * by imposing this definition we can re-write the governing eq
- a) we assume that the shear force is applied in the center of shear C = (xc, yc)
- Tyxc - Txyg = ∫0J2q'*b ds = 2L1q1 + 2L2q2
- the SHEAR FLUX q is connected to the TORSIONAL MOMENT
Mtwv = ∫0a q(s)·jc(s) ds
- recalling that the warping function is:
ψc = - ∫0s jc(s) ds + ψ0
- if we derive it:
dψc/ds = - jc(s)
- the TORSIONAL MOMENT becomes:
Mtwv = ∫0a q
+ EΘo ∫0a jψ' dψc/ds ds
- EΘo ∫0a jψ dψc/ds ds
- integrating by parts:
Mtwv = EΘo {[jψ'ψc]0a - ∫0a d2jψ/dx2 ψc ds}
1) jψ'ψc|0a = 0
Sψ(0) = ∫0a ψb ds = 0 & Sψ(a) = ∫0a ψb ds = 0