Anteprima
Vedrai una selezione di 2 pagine su 6
Advection Diffusion Problems Pag. 1 Advection Diffusion Problems Pag. 2
1 su 6
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

NUMERICAL METHODS FOR DIFFERENTIAL EQNS

ADVECTION - DIFFUSION

given vector field

for our ease we go to 1D case

diffusive term   advection term

b.c.: u(0) = 0   u(L) = 1

We want to figure out an exact solution of the problem.

linear scl. when diffusive term dominates with respect to transport

when transport dominates with respect to

diffuse solution with 2 regions, 1 with strong variations,

the other almost constant high gradient regions = boundary layer

Dirichlet b.c.

could also have constant term

becomes global 1

global becomes

1st and last row adjusted accordingly to bc.

e.g. discretization of transport term:

(3rd line of the problem)

Classic 1D FE scheme 1D, equivalent to a centered

Laplace discretization     Central approximation finite difference scheme

PÉCLET NUMBER

-ui-1 + 2ui - ui+1 +

exact solution?

Pe = Bh/, similar meaning of Pe, tells relative importance of advection and diffusion terms

  • U'' = 0 , S = 0 fundamental solution → substituting we get charact eqn a.b.c. → solution
  1. + (1 - Re)/(4 - Pe)
  2. - (1 + Re)/(4 - Pe)
  3. - (4 - Pe)
  4. - (1 + Re)
  • number of nodes

Suppose for simplicity we even, Pe = 7 → Bh / 2μ (Adv dominates wrt Diff.)

  • negative denominator
  • solution oscillates!!!

Where is the problem?

  • βui+1 - ui-1/2
  • is sensitive to the direction!!
  • In the discretization we say something not meaningful from physical point of view!
  • Still we have advantages: getting a2nd order precision

We don’t want to change approximation, only to avoid oscillations work on Pe

Pe = B(h)/2/μ

  • h < 2μ/β = 0.02
  • It involves very small elements, big issue in 2D or 3D
  • In practice increasing of number of elements not used

Other possibility: Choose something in order of convergence to avoid oscillation

  • Upwind finite difference approximation
  • only 1st order accurate
  • it adds artificial diffusion, "killing" oscillations
  • β > 0

μ - (ui+1 + 2ui - ui-1)/h2

  • + βui - ui-1/h
  • = 0
  • + βui+1 - ui/h
  • β < 0
  1. - ui - ui-1 = ui - ui-1/h + ui-1 - ui/1/2h + ...

= -ui+1/2h + 2ui/2h + ui - ui-1/2h

It is, in practice, another diffusive term. Centered approximation of 1st derivative

(μ + Bβ/2)

- ui2 + 2ui - uui+1 - ui-1

= -

  • Upwinding technique

equivalent to the original problem, in which physical diffusivity is increased of an artificial diffusion term, = 3Bh/2

Dettagli
Publisher
A.A. 2017-2018
6 pagine
SSD Scienze matematiche e informatiche MAT/05 Analisi matematica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher gm_95 di informazioni apprese con la frequenza delle lezioni di Numerical Modeling of Differential Problem e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Miglio Edie.