Anteprima
Vedrai una selezione di 7 pagine su 63
Numerical modeling of differential problems - Appunti completi  Pag. 1 Numerical modeling of differential problems - Appunti completi  Pag. 2
Anteprima di 7 pagg. su 63.
Scarica il documento per vederlo tutto.
Numerical modeling of differential problems - Appunti completi  Pag. 6
Anteprima di 7 pagg. su 63.
Scarica il documento per vederlo tutto.
Numerical modeling of differential problems - Appunti completi  Pag. 11
Anteprima di 7 pagg. su 63.
Scarica il documento per vederlo tutto.
Numerical modeling of differential problems - Appunti completi  Pag. 16
Anteprima di 7 pagg. su 63.
Scarica il documento per vederlo tutto.
Numerical modeling of differential problems - Appunti completi  Pag. 21
Anteprima di 7 pagg. su 63.
Scarica il documento per vederlo tutto.
Numerical modeling of differential problems - Appunti completi  Pag. 26
1 su 63
D/illustrazione/soddisfatti o rimborsati
Disdici quando
vuoi
Acquista con carta
o PayPal
Scarica i documenti
tutte le volte che vuoi
Estratto del documento

Numerical Modelling of Differential Problems

Introduction to Numerical Analysis

Formulation of a generic problem: F(x, d) = 0

  • F can be any type of eqt: linear, int, partial diff...
  • F, d known → direct problem
  • F, x known → inverse problem
  • x, d known → identification problem

Problem is said to be WELL-POSED when the pb admits a solution, UNIQUE and continuously depending on the data.

If introduced a small perturbation on data is expected to have a small perturbation on the solution F(x+δx, d+δd)=0

∇y∃δ : 3K(y, d) : ||δd|| < ε ⇒ ||δx|| < K(d, y, d) ||δd||

Can be defined the CONDITION NUMBER as the number that quantifies the well-posed property of a problem

Relative Condition Number:

K(d) = supδdε ||δx||/||x|| / ||δd||/||d||

"Which is the entity of the relative perturbation when introduced a pert. on the data"

Absolute Condition Number:

Kabs(d) = supδdε ||δx|| / ||δd||

For big K (≥1000) the pb is ILL-CONDITIONED and the solution is totally different

small K (≤1-100) the pb is WELL-CONDITIONED

NUMERICAL METHODS

Discrete numerical counterpart Fn(xn,dn)=0 n>1 of the continuous pb:

A method can be said CONSISTENT if: Fn(x, d) = Fn(x, d) - F(x, d) ⇒0

∇n→∞

If this property is true for every n the method is said STRONGLY CONSISTENT

Fm(x, d) = F∀n

A method is said to be STABLE (or well-posed) if ∇ fixed n, ∃! solution

xn fort d and xn depends continuously on the data, similarly to the continuous pb.

Fn(xn+δxn, dn+δdn)=0

If the continuous pb is well-posed, passing to the numerical method we want to maintain this property, unless it's useless.

Remark. Sobolev spaces are Banach spaces for 1 ≤ p ≤ ∞; for p = 2, W1,2(Ω) is also a Hilbert space. The case for p = 2 is the most common in FE analysis and we will use the notation H1(Ω) = W1,2(Ω). For k = 1 we have

H1(Ω) = {u ∈ L2(Ω); ∇u ∈ L2(Ω)}

with the following inner product and norm

(u,v)H1(Ω) = (u,v)L2(Ω) + (∇u, ∇v)L2(Ω)

‖u‖H1(Ω) = ‖u‖L2(Ω) + ‖∇u‖L2(Ω)

Remark. For d = 1 it can be shown that its functions are continuous for d = 1, may lack values at certain isolated points for d = 2 and be discontinuous along a curve for d = 3.

How to define the boundary values of a function belonging to a Sobolev space?

IDEA: make a smooth approximation from within the domain, and then evaluate this approximation on the boundary. This is called the trace of the function. We can define the trace operator

γ : W1,p(Ω) → Lp(∂Ω)

and the space

H01(Ω) = {v ∈ H1(Ω) : (γv)|∂Ω = 0}

Classification of PDEs

The equations of elasticity (no inertial terms) or the Laplacian are elliptic PDEs.

∇⋅σ + F = 0, ε = 1/2 [∇u + (∇u)T], σ = C : ε, -△u = f

The heat conduction equation is an example of a parabolic PDE.

∂T/∂t - ∇⋅(k∇T) = 0

Hyperbolic PDEs describe wave propagation and transport phenomena.

2u/∂t2 - c2△u = 0, ∂u/∂t + a ⋅ ∇u = 0

FINITE DIFFERENCES

f(xi) = limh→0 [f(xi + h) - f(xi)]/h

uiFD = [f(xi+1) - f(xi)]/h, uiBD = [f(xi) - f(xi-1)]/h, uiCD = [f(xi+1) - f(xi-1)]/2h

f(xi+1) = f(xi) + h f(xi) + h2/2 fi), f(xi) = f(xi) - uiFD = - h/2 fi)

f(xi) - uiBD = h/2 fi), f(xi) - uiCD = - h2/6 fi)

01 w''v'dx = ∫01 fvdx - ∫01 r''v'dx

the solution of the pb is a translation of the solution obtained for w

A non-homo Dirichlet problem can be recast into an homo one,

where the pb can be solved for w then recall u = w+r

MINIMIZATION FORMULATION of the pb

A third formulation of the DIFFERENTIAL PROBLEM can be introduced

J(v) = ½ ∫01 v'v'dx - ∫01 fvdx

the solution u to the diff. pb is the one which minimizes the internal

energy of the system F(u)

(H) min J(v) = min ½ ∫01 v'v'dx - ∫01 fvdx

(D) - u'' = f in (0,1)

u(0) = u(1) = 0

(V) find u ∈ H10(0,1) s.t.

01 u'v'dx = ∫01 fvdx ∀v ∈ H10(0,1)

(M) find u ∈ H10(0,1) s.t.

min F(v) = min ½ ∫01 v'v'dx - ∫01 fvdx

v ∈ H10(0,1) v ∈ H10(0,1)

⇒ (D) ⇔ (V) ⇔ (M)

⇒ if u'' ∃ and is continuous

(V) ⇒ (M) ∀ε H10(0,1)

if u is solution

of (V) then is

solution of (M)

Now we want to check if our pb is well-posed, so Lax-Milgram lemma's hypothesis must be satisfied.

-Δuⁿ = f in Ω

u = 0 on ∂Ω

a(u,v) = ∫Ω∇v·∇v dx

  1. V is an Hilbert space
  2. Continuity of a(u,v),

|a(u,v)| = |∫Ω∇v·∇v dx| ≤ ∫Ω||u||L2||v||L2 ≤ ||u||L2||v||L2

Continuity of F(v):

|F(v)| = |∫Ωf·v dx| ≤ ||f||L2||v||L2 ≤ ||F||L2||v||L2

  1. Coercivity of a(v,v)

a(v,v) ≥ α||v||H0¹² >0

Ω||v||L2

a(v,v) = ∫Ω∇v·∇v dx = ||∇v||L2

||v||L2 = ||v1||L2 + ||v2||L2

≤ c∑||v1||L2 + ||v2||L2

≤ (r+c2)∑||v||L2

||v||H0¹² =

a(v,v) = ∫Ω∇v·∇v dx = ||∇v||² ≥

||v||H0¹

Proved these hy it is possible to say that the continuous problem: find u∈Γ a(u,v)=F(v) ∀ v∈ V in well-posed → solution ∃, it's unique and depends continuously on data

Using the considerations made with ii the discrete pb (c) is well-posed too

Strong Form

-Δu = f in Ω u = 0 on ∂Ω

Weak Form: find u∈Γ a(u,v)=F(v) ∀ v∈ V

Algebraic pb

Au=f where A contains the coeff of uh in Vh

a(∫φφ) = ∫00φφ'

Dettagli
Publisher
A.A. 2022-2023
63 pagine
SSD Scienze matematiche e informatiche MAT/08 Analisi numerica

I contenuti di questa pagina costituiscono rielaborazioni personali del Publisher Gianoo di informazioni apprese con la frequenza delle lezioni di Numerical Modeling of Differential Problem e studio autonomo di eventuali libri di riferimento in preparazione dell'esame finale o della tesi. Non devono intendersi come materiale ufficiale dell'università Politecnico di Milano o del prof Miglio Edie.